ROULETTE 37
ROULETTE 37 - INSIDE vs OUTSIDE
*************
(DRAGU’s method)
Impartire a tablei de joc (36 no.) in 20 sub-matrici (neconventionale) :
{ Partition of the board of play (36 no.) in 20 sub-matrices (unconventional):}
{ Partition du board of play (36 no.) en 20 sous-matrices (non conventionnelles) :}
ZERO
0
============
| 1 | 2 | 3 | S1 : 1 – 2 S2 : 3 - 4
---------------------
| 4 | 5 | 6 | S3 : 5 – 6
---------------------
| 7 | 8 | 9 | S4 : 7 – 8 S5 : 9 – 10
----------------------
| 10 | 11 | 12 | S6 : 11 - 12
============
| 13 | 14 | 15 | S7 : 13 S8 : 14 - 15
---------------------
| 16 | 17 | 18 | S9 : 16 – 17 S10 : 18 - 19
---------------------
| 19 | 20 | 21 | S11 : 20 – 21
---------------------
| 22 | 23 | 24 | S12 : 22 – 23 S13 : 24
============
| 25 | 26 | 27 | S14 : 25 – 26 S15 : 27
---------------------
| 28 | 29 | 30 | S16 : 28 – 29 S17 : 30 - 31
---------------------
| 31 | 32 | 33 | S18 : 32 – 33
---------------------
| 34 | 35 | 36 | S19 : 34 S20 : 35 - 36
============
Cele 20 sub-matrici se pot dezvolta (step 3,7,9,11) in 4 grupuri (cu 5 sub-matrici) :
{ The 20 sub-matrices can develop (step 3, 7, 9, 11) in 4 groups (with 5 sub-matrices):}
{ Les 20 sous-matrices peuvent se développer (step 3, 7, 9, 11) en 4 groupes (avec 5 sous-matrices) :}
S I : S1+S4+S7+S10+S13 S II : S1+S8+S15+S2+S9
S16+S19+S2+S5+S8 S16+S3+S10+S17+S4
S11+S14+S17+S20+S3 S11+S18+S5+S12+S19
S6+S9+S12+S15+S18 S6+S13+S20+S7+S14
S III : S1+S10+S19+S8+S17 S IV : S1+S12+S3+S14+S5
S6+S15+S4+S13+S2 S16+S7+S18+S9+S20
S11+S20+S9+S18+S7 S11+S2+S13+S4+S15
S16+S5+S14+S3+S12 S6+S17+S8+S19+S10
Matrices :
M1 (S1+S4+S7+S10+S13) : 1 – 2 – 7 – 8 – 13 – 18 – 19 – 24 (8 no.)
M2 (S2+S5+S8+S16+S19) : 3 – 4 - 9 – 10 – 14 – 15 – 28 – 29 – 34 (9 no.)
M3 (S3+S11+S14+S17+S20) : 5 – 6 – 20 – 21 – 25 – 26 – 30 – 31 – 35 – 36 (10 no.)
M4 (S6+S9+S12+S15+S18) : 11 – 12 – 16 – 17 – 22 – 23 – 27 – 32 – 33 (9 no.)
M5 (S1+S2+S8+S9+S15) : 1 – 2 – 3 – 4 – 14 – 15 – 16 – 17 – 27 (9 no.)
M6 (S3+S4+S10+S16+S17) : 5 – 6 – 7 – 8 – 18 – 19 – 28 – 29 – 30 – 31 (10 no.)
M7 (S5+S11+S12+S18+S19) : 9 – 10 – 20 – 21 – 22 – 23 – 32 – 33 – 34 (9 no.)
M8 (S6+S7+S13+S14+S20) : 11 – 12 – 13 – 24 – 25 – 26 – 35 – 36 (8 no.)
M9 (S1+S8+S10+S17+S19) : 1 – 2 – 14 – 15 – 18 – 19 – 30 – 31 – 34 (9 no.)
M10 (S2+S4+S6+S13+S15) : 3 – 4 – 7 – 8 – 11 – 12 – 24 – 27 (8 no.)
M11 (S7+S9+S11+S18+S20) : 13 – 16 – 17 – 20 – 21 – 32 – 33 – 35 – 36 (9 no.)
M12 (S3+S5+S12+S14+S16) : 5 – 6 – 9 – 10 – 22 – 23 – 25 – 26 – 28 – 29 (10 no.)
M13 (S1+S3+S5+S12+S14) : 1 – 2 – 5 – 6 – 9 – 10 – 22 – 23 – 25 – 26 (10 no.)
M14 (S7+S9+S16+S18+S20) : 13 – 16 – 17 – 28 – 29 – 32 – 33 – 35 – 36 (9 no.)
M15 (S2+S4+S11+S13+S15) : 3 – 4 – 7 – 8 – 20 – 21 – 24 – 27 (8 no.)
M16 (S6+S8+S10+S17+S19) : 11 – 12 – 14 – 15 – 18 – 19 – 30 – 31 – 34 (9 no.)
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1 M2 M3 M4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 | | | | | 3 | | | | | | | | |
--(x)—-(x)-------(y) ----------------(x)-(y) --------------------- -----------------------
| | | | | 4 (x) | | | | 5 | 6 | | | | |
--------------------- --------------------- ---------(x)---(x)-(y) ----------------------
| 7 | 8 | | | | | 9 | | | | | | | | |
--(x)---(x)-------(y) ----------------(x)-(y) --------------------- --------(x)-----(x)--
| | | | | 10(x) | | | | | | | | 11 | 12 |
============ ============ ============ ============(y)
| 13 | | | | | 14 | 15 | | | | | | | | |
--(x)--------------(y) ---------(x)---(x)-(y) --------------------- --(x)---(x)----------
| | (x) 18 | | | | | | | | | | 16 | 17 | |
--------------------- ---------------------- ---------(x)-------(y) ------- -------------(y)
| 19 | | | | | | | | | 20 | 21 | | | | |
--(x)--------------(y) --------------------- ----------------(x)- --(x)---(x)----------
| | (x) 24 | | | | | | | | | | 22 | 23 | |
============ ============ =(x)==(x)===== ============(y)
| | | | | | | | | 25 | 26 | | | | | 27 |
--------------------- -- (x)----(x)-------(y) -------------------(y) ----------------(x)---
| | | | | 28 | 29 | | | | | 30 | | | | |
--------------------- - --------------------- -(x)-----------(x)-- ---------(x)---------(y)
| | | | | | | | | 31 | | | | | 32 | 33 |
--------------------- --(x)--------------(y) --------------------(y) -----------------(x)---
| | | | | 34 | | | | | 35 (x) 36 | | | | |
============ ============ ============ =============
M5 M6 M7 M8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 (x) 2 | 3 | | | | | | | | | | | | |
----------------(x)-(y) ----------(x)-------- -------------------- ----------------------
| 4 | | | | | 5 | 6 | | | | | | | | |
--(x)---------------- ----------------(x)-(y) --------------------- ----------------------
| | | | | 7 | 8 | | | | | 9 | | | | |
--------------------- --(x)---(x)--------- ---------------(x)-(y) --------(x)----------
| | | | | | | | | 10(x) | | | | 11 | 12 |
=========(x)= ============ ============ =========(x)=(y)
| (x)14 | 15 | | | | | | | | | | 13 | | |
--------------------(y) --------------------- --------------------- --(x)-----------------
| 16 | 17 | | | | (x)18 | | | | | | | | |
--(x)---(x)-------- -------------------(y) --------(x)----(x)- ------- ---------------
| | | | | 19(x) | | | | 20 | 21 | | | | |
--------------------- --------------------- --(x)--------------(y) ----------------(x)---
| | | | | | | | | 22 | 23 | | | | | 24 |
============ ============ =====(x)===== =(x)==(x)=====(y)
| | (x)27 | | | | | | | | | | 25 | 26 | |
--------------------(y) --(x)--------------- --------------------- -----------------------
| | | | | 28 | 29 | 30 | | | | | | | | |
--------------------- ---------(x)—-(x)-(y) --------------------- ----------------------
| | | | | 31 | | | | (x) 32 | 33 | | | | |
---------------------- --(x)--------------- ----------------(x)-(y) ---------(x)----(x)--(y)
| | | | | | | | | 34(x) | | | | 35 | 36 |
============ ============ ============ =============
M9 M10 M11 M12
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 | | | | | 3 | | | | | | | | |
--(x)---(x)-------(y) ----------------(x)-(y) --------------------- ---------(x)----(x)--
| | | | | 4 (x) | | | | | | | | 5 | 6 |
--------------------- --------------------- --------------------- --------------------(y)
| | | | | 7 | 8 (x) | | | | | | | | 9 |
--------------------- --(x)--------------(y) ---------------------- -----------------(x)--
| | | | | | 11 | 12 | | | | | | 10(x) | |
=====(x)==(x)=(y) =====(x)==(x)= =(x)========= ============(y)
| | 14 | 15 | | | | | | 13 | | | | | | |
---------------------- --------------------- ---------(x)-------(y) ----------------------
| | (x)18 | | | | | | 16 | 17 | | | | | |
-------------------(y) --------------------- --(x)--------------- -----------------------
| 19 | | | | | | | | | 20 | 21 | | | | |
--(x)---------------- --------------------- ---------(x)----(x)-(y) --------(x)----------
| | | | | | (x)24 | | | | | | 22 | 23 | |
============ ===========(y) ============ =(x)=========(y)
| | | | | | (x) 27 | | | | | | 25 | 26(x) |
-------------------(y) ---------------------- ---------------------- -----------------------
| | (x) 30 | | | | | | | | | | 28 | 29 | |
--------------------- ---------------------- ---------(x)----(x)-- --(x)---(x)---------(y)
| 31(x) | | | | | | | | 32 | 33 | | | | |
-------------------(y) --------------------- --------------------(y) ----------------------
| 34(x) | | | | | | | | 35 (x)36 | | | | |
============ ============ ============ =============
M13 M14 M15 M16
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 | | | | | | | | (x) 3 | | | | |
--(x)----(x)---(x)-(y) ---------------------- --------------------(y) ----------------------
| | 5 | 6 | | | | | | 4 (x) | | | | | |
--------------------- -- --------------------- ------------------- -----------------------
| | | 9 | | | | | | 7 | 8 (x) | | | | |
----------------(x)-(y) ---------------------- --(x)--------------(y) ---------(x)----(x)--
| 10(x) | | | | | | | | | | | | 11 | 12 |
============ ============ ============ ============(y)
| | | | | 13(x) | | | | | | | | 14 (x)15 |
--------------------- - -------------------(y) --------------------- ----------------------
| | | | | 16 | 17(x) | | | | | | | | 18 |
--------------------- --(x)----------------- ---------------(x)-(y) --(x)-----------(x)--(y)
| | | | | | | | | (x) 20 | 21 | | 19 | | |
--(x)----(x)-------- --------------------- --------------------- ----------------------
| 22 | 23 | | | | | | | | (x)24 | | | | |
===========(y) ============ ===========(y) =============
| 25 | 26(x) | | | | | | | | 27 | | | | |
--(x)--------------- --(x)--------------(y) ----------------(x)- ---------------------(y)
| | | | | 28 | 29(x) | | | | | | | (x) 30 |
------------------ --- --------------------- - -------------------- --(x)-----------------
| | | | | (x)32 | 33 | | | | | | 31 | | |
---------------------- ---------------(x)-(y) ---------------------- ---------------------(y)
| | | | | (x) 35 | 36 | | | | | | 34(x) | |
============ ============ ============ =============
VAR. I (INSIDE)
=====
1) – MODE 1 – (intreg) (whole)
- serie de numere cu matricile M1,M2,…,M16 ;
- se incepe cu (1xM1+1xM2+ZERO=1). Fiecare matrice joaca independent, conform BET TABLE. La urmatorul spin, se adauga – secvential- urmatoarea matrice ;
- numarul ZERO se calculeaza in functie de (bet).
- la SUMA PROFIT>0, toate matricile active (necastigatoare), se reseteaza pe pos.’’x1’’. Se trece la o noua sesiune de joc (NEW session).
- E=Engulf (apartine, cuprins in…)
{- series of numbers with the matrices M1, M2,..., M16;
- it starts with (1xM1 + 1xM2 + ZERO = 1). Each matrix plays independently, according to BET TABLE. At the next spin, add – sequence-the next matrix;
- the number ZERO is calculated according to (BET).
- at the PROFIT amount > 0, all active (loses) matrices, is reset to pos. ' ' X1 ' '. Move to a new session of the game (NEW).
-E = Engulf (belongs, contained in...)}
{- série de numéros avec les matrices M1, M2,..., M16;
- il commence par (1xM1 + 1xM2 + ZERO = 1). Chaque matrice joue indépendamment, selon BET TABLE. Au tour suivant, ajoutez la séquence de la matrice suivante ;
- le nombre ZERO est calculé en fonction de (BET).
- au montant de profit> 0, toutes les matrices actives (qui perds) sont réinitialisées pour pos. ' ' X1 ' '. Déplacez-vous vers une nouvelle session du jeu (NEW).
-E - Engulf (appartient, contenu dans...)}
RECOMANDARE : - la profit> (30-40)x(bet=1), parasiti sesiunea de joc si reveniti ulterior.
Jucati numai jetoane mici (ex. 10 bani, 1 cent, etc). Jucati responsabil !
{ RECOMMENDATION:-At Profit > (30-40) x (bet = 1), leave the game session and return later. Play only small tokens (e.g. 10 Bani, 1 cent, etc.). Play responsibly!}
{ RECOMMENDATION:-Au profit> (30-40) x (bet=1), quitter la session de jeu et revenir plus tard. Ne jouez que de petits jetons (p. ex. 10 Bani, 1 cent, etc.). Jouez de façon responsable!}
BET TABLE (9 no. - MEDIUM)
----------------
(x = no. in matrices)
BET COST PROFIT
- x= 1 9 36- 9=27
- x= 1 9 36-18=18
(18)
- x= 1 9 36-27= 9
(27)
- x= 2 18 72-45=27
(45)
- x= 2 18 72-63= 9
(63)
- x= 3 27 108-90=18
(90)
- x= 4 36 144-126=18
- x= 5 45 180-171= 9
(171)
- x= 7 63 252-234=18
(234)
- x= 9 81 324-315= 9
( 315)
- x=12 108 432-423= 9
(423)
- x=16 144 576-567= 9
(567)
- x=22 198 792-765=27
(765)
- x=29 261 1044-1026=18
(1026)
- x=39 351 1404-1377=27
(1377)
- x=52 468 1872-1845=27
(1845)
- x=69 621 2484-2466=18
(2466)
- x=92 828 3312-3294=18
(3294)
---------------------------------------------------------- CASINO LIMIT X= 100
- x=123 1107 4428-4401=27
(4401)
- x=164 1476 5904-5877=27
(5877)
EX.(E.G.)
- |->NEW |->NEW |->NEW |->NEW
SPIN 1. 2. 3. 4. 5. 6. | 7. | 8. | 9. | 10.
M1 (x1) - - - - -
M2 x1 x1 x1 x2 x2 (x3)
M3 - x1 x1 x1 (x2) -
M4 - - (x1) - - -
----------------------------------------------------------------------------------------
M5 x1 x1 (x1) - - - -
M6 - x1 x1 x1 x1 x1 x1
M7 - - x1 x1 (x1) - -
M8 - - - x1 x1 x1 x1
----------------------------------------------------------------------------------------
M9 (x1) -
M10 - x1
M11 - -
M12 - -
----------------------------------------------------------------------------------------
- Play : 1xM1+1xM2+ZERO=1 ; LAST=8 E M1 - profit=18
- Play : 1xM2+1xM3+ZERO=1 ; LAST=32
- Play : 1xM2+1xM3+1xM4+ZERO=1 ; LAST=32 E M4
- Play : 2xM2+1xM3+1xM5+ZERO=1 ; LAST=11
- Play : 2xM2+2xM3+1xM5+1xM6+ZERO=2 ; LAST=21 E M3
- Play : 3xM2+1xM5+1xM6+1xM7+ZERO=2 ; LAST=15 E M2,M5 – profit=67
(all active matrices on pos.’’x1’’ – NEW session)
- Play : 1xM6+1xM7+1xM8+ZERO=1 ; LAST=0 (ZERO !) – profit=75
- Play : repeat spin 7 ; LAST=33 E M7 – profit=83 (NEW)
- Play : 1xM6+1xM8+1xM9+ZERO=1 ; LAST=34 E M9 - profit=91 (NEW)
2) – MODE 2
(jumatate – conform pozitiilor notate cu (x) – INSIDE)
{(half – according to the positions denoted by (x) – INSIDE)}
{(la moitié - selon les positions dénotées par (x)- INSIDE)}
VAR. II (OUTSIDE)
======
(conform pozitiilor notate cu (y) in reprezentarea grafica a matricilor )
{(according to the (y) positions in the graphical representation of the matrices)}
{(selon les positions (y) dans la représentation graphique des matrices)}
Pentru aceasta varianta, tabla de joc devine :
{For this variant, the game board becomes:}
{Pour cette variante, le plateau de jeu devient :}
ZERO
0
============
| 1 | 2 | 3 |
--------------------(x)S1 S1 : 1-2-3-4-5-6
| 4 | 5 | 6 |
--------------------(x)S2 S2 : 4-5-6-7-8-9
| 7 | 8 | 9 |
--------------------(x)S3 S3 : 7-8-9-10-11-12
| 10 | 11 | 12 |
===========(x)S4 S4 : 10-11-12-13-14-15
| 13 | 14 | 15 |
--------------------(x)S5 S5 : 13-14-15-16-17-18
| 16 | 17 | 18 |
--------------------(x)S6 S6 : 16-17-18-19-20-21
| 19 | 20 | 21 |
--------------------(x) S7 S7 : 19-20-21-22-23-24
| 22 | 23 | 24 |
============(x)S8 S8 : 22-23-24-25-26-27
| 25 | 26 | 27 |
--------------------(x)S9 S9 : 25-26-27-28-29-30
| 28 | 29 | 30 |
-------------------(x)S10 S10 : 28-29-30-31-32-33
| 31 | 32 | 33 |
-------------------(x)S11 S11 : 31-32-33-34-35-36
| 34 | 35 | 36 |
============
Matrices :
M1 : S1 + S3 + S5 + S7
M2 : S1 + S3 + S5 + S9 + S11
M3 : S2 + S6 + S9 + S11
M4 : S4 + S6 + S8 + S10
M5 : S1 + S5 + S9
M6 : S2 + S6 + S10
M7 : S3 + S7 + S11
M8 : S4 + S8 + S11
M9 : S1 + S4 + S6 + S9 + S11
M10 : S1 + S3 + S8
M11 : S5 + S7 + S11
M12 : S2 + S4 + S8 + S10
M13 : S1 + S3 + S8
M14 : S5 + S9 + S11
M15 : S1 + S3 + S6 + S8
M16 : S4 + S6 + S9 + S11
1) – MODE 1 – (intreg) (whole)
- serie de numere cu matricile M1,M2,…,M16 ;
- se incepe cu 1xM1. Fiecare matrice joaca independent ; in caz de pierdere, se dubleaza (triple). La urmatorul spin, se adauga – secvential- urmatoarea matrice ;
- numarul ZERO se calculeaza in functie de (bet) ;
- la SUMA PROFIT>0, toate matricile active (necastigatoare), se reseteaza pe pos.’’x1’’. Se trece la o noua sesiune de joc (NEW session).
{- series of numbers with the matrices M1, M2,..., M16;
- it starts with 1xM1. Each matrix plays independently; In case of loss, it doubles (triple). At the next spin, add – sequence-the next matrix;
- the number ZERO is calculated according to (BET);
- at the PROFIT amount > 0, all active (loses) matrices, is reset to pos. ' ' X1 ' '. Move to a new session of the game (NEW).}
{- série de numéros avec les matrices M1, M2,..., M16;
- il commence par 1xM1. Chaque matrice joue indépendamment; En cas de perte, il double (triple). Au tour suivant, ajoutez la séquence de la matrice suivante ;
- le nombre ZERO est calculé en fonction de (BET);
- au montant de profit> 0, toutes les matrices actives (qui perds) sont réinitialisées pour pos. ' ' X1 ' '. Déplacez-vous vers une nouvelle session du jeu (NEW).}
EX.(E.G.)
SPIN 1. 2. 3. 4. 5. 6.
M1 (x1) - - - -
M2 - (x1) - - -
M3 - - (x1) - -
M4 - - - x1 (x2)
---------------------------------------------
M5 - x1 (x2)
M6 - x1
M7 -
M8 -
----------------------------------------------
- Play : 1xM1 ; LAST=10 E S3,S4 (M1) – profit=2
- Play : 1xM2 ; LAST=36 E S11 (M2) – profit=3
- Play : 1xM3 ; LAST=28 E S9,S11 (M3) – profit=5
- Play : 1xM4 ; LAST=35
- Play : 2xM4+1xM5 ; LAST=17 E S5,S6 (M4) – profit=8
- Play : 2xM5+1xM6 ; LAST=27 E S8,S9 (M5) – profit=11
2) – MODE 2
- se verifica matricile corespunzatoare ultimului numar extras (LAST). Se joaca „martingale” (matricile opuse). Matricile care pierd, se dubleaza.
{- check the matrices corresponding to the last extracted number (LAST). It plays "Martingale" (opposite matrices). The matricile that loses, doubles.}
{- vérifiez les matrices correspondant au dernier numéro extrait (LAST). Il joue "Martingale" (en face de matrices). Le matrices qui perd, double.}
EX.(E.G.)
- |->NEW |->NEW
SPIN 1. 2. | 3. | 4.
M1 - (x1) (-) -
M2 (-) (-) (-) -
M3 (-) (-) (-) -
M4 (-) - (x1) -
----------------------------------------------
M5 (-) - (x1) -
M6 - (x1) (-) -
M7 - (x1) - x1
M8 (-) - x1 x1
----------------------------------------------
M9 (-) - (x1) -
M10 (-) (-) - x1
M11 - x1 (x1) -
M12 (-) (-) - x1
----------------------------------------------
M13 (-) (-) - x1
M14 (-) - (x1) -
M15 (-) (-) (-) -
M16 (-) - (x1) -
- LAST=26 E S8(M4,M8,M10,M12,M13,M15) ; S9(M2,M3,M5,M9,M14,M16)
- Play : 1xM1+1xM6+1xM7+1xM11+ZERO=1
LAST=9 E S2(M3,M6,M12); S3(M1,M2,M7,M10,M13,M15) – profit=4 (NEW)
- Play : 1xM4+1xM5+1xM8+1xM9+1xM11+1xM14+1xM16+ZERO=1
LAST=16 E S5(M1,M2,M5,M11,M14); S6(M3,M4,M6,M9,M15,M16) – profit=14
Comentarii
Trimiteți un comentariu