ROULETTE 12
ROULETTE 12
************
(DRAGU’s method)
Sirul natural de 36 no. (1-2-3-4…..33-34-35-36) – cu step 7, 11, 13, 17 (spirala – seria FIBONACCI) – se poate imparti in 16 matrici de cate 9 no. :
{ Natural 36 no. (1-2-3-4..... 33-34-35-36) – with step 7, 11, 13, 17 (spiral – FIBONACCI series) – can divide into 16 matrices of 9 no.:}
{ Naturel 36 no. (1-2-3-4.... 33-34-35-36) - avec l'étape 7, 11, 13, 17 (spiral - série FIBONACCI) - peut se diviser en 16 matrices de 9 no.:}
- 1 – 8 – 15 – 22 – 29 – 36 – 7 – 14 - 21 //
(1 – 7 – 8 – 14 – 15 – 21- 22 – 29 – 36)
- 28 – 35 – 6 – 13 – 20 – 27 – 34 – 5 - 12 //
(5 – 6 – 12 – 13 – 20 – 27 – 28 – 34 – 35)
- 19 – 26 – 33 – 4 – 11 – 18 – 25 – 32 - 3 //
(3 – 4 – 11 – 18 - 19 – 25 – 26 – 32 – 33)
- 10 – 17 – 24 – 31 – 2 – 9 – 16 – 23 – 30
(2 – 9 – 10 – 16 – 17 – 23 – 24 – 30 – 31)
- 1 – 12 – 23 – 34 – 9 – 20 – 31 – 6 – 17 //
(1 – 6 – 9 – 12 – 17 – 20 – 23 – 31 – 34)
- 28 – 3 – 14 – 25 – 36 – 11 – 22 – 33 – 8 //
(3 – 8 – 11 – 14 – 22 – 25 – 28 – 33 – 36)
- 19 – 30 – 5 – 16 – 27 – 2 – 13 – 24 – 35 //
(2 – 5 – 13 – 16 – 19 – 24 – 27 – 30 – 35)
- 10 – 21 – 32 – 7 – 18 – 29 – 4 – 15 – 26
(4 – 7 – 10 – 15 – 18 – 21 – 26 – 29 – 32)
- 1 – 14 – 27 – 4 - 17 – 30 – 7 – 20 – 33 //
(1 – 4 – 7 – 14 – 17 – 20 – 27 – 30 – 33)
- 10 – 23 – 36 – 13 - 26 – 3 - 16 – 29 – 6 //
(3 – 6 – 10 – 13 – 16 – 23 – 26 – 29 – 36)
- 19 – 32 – 9 – 22 – 35 – 12 – 25 – 2 – 15 //
(2 – 9 – 12 – 15 – 19 – 22 – 25 – 32 – 35)
- 28 – 5 - 18 – 31 – 8 – 21 – 34 – 11 - 24
(5 – 8 – 11 – 18 – 21 – 24 – 28 – 31 – 34)
- 1 – 18 – 35 – 16 – 33 – 14 – 31 – 12 – 29 //
(1 – 12 – 14 – 16 – 18 – 29 – 31 – 33 – 35)
- 10 – 27 – 8 – 25 – 6 – 23 – 4 – 21 – 2 //
(2 – 4 – 6 – 8 – 10 – 21 – 23 – 25 – 27)
- 19 – 36 – 17 – 34 – 15 – 32 – 13 – 30 – 11 //
(11 – 13 – 15 – 17 – 19 – 30 – 32 – 34 – 36)
- 28 – 9 – 26 – 7 – 24 – 5 – 22 – 3 – 20
(3 – 5 – 7 - 9 – 20 - 22 – 24 – 26 – 28 )
VAR. I
====
Representation :
(matrices)
M1 M2 M3 M4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 (x) | | | | | | | | | 3 | | (x) 2 | |
--------------------- ----------(x)-------- -----------------(x)- -----------------------
| | | | | | 5 | 6 | | 4 | | | | | | |
--(x)---(x)--------- ----------------(x)-- --(x)---------------- -----------------(x)--
| 7 | 8 | | | | | | | | | | | | | 9 |
--------------------- ---------------------- ---------(x)--------- --(x)-----------------
| | | | | | | 12 | | | 11 | | | 10 | | |
=========(x)= =(x)======(x)= ============ =============
| | 14 | 15 | | 13 | | | | | | | | | | |
---------(x)--------- ---------------------- --------------------- -----------------------
| | | | | | | | | | | 18 | | 16 | 17(x) |
----------------(x)-- ---------(x)--------- ----------------(x)-- --(x)------------------
| | | 21 | | | 20 | | | 19 | | | | | | |
--(x)---------------- --------------------- --(x)---------------- ---------(x)----------
| 22 | | | | | | | | | | | | | 23 | 24 |
============ =========(x)= =====(x)===== ==========(x)=
| | | | | | | 27 | | 25 | 26 | | | | | |
--------------------- --(x)--------------- --(x)---------------- -----------------------
| | 29 | | | 28 | | | | | | | | | | 30 |
----- ----(x)--------- --------------------- ----------------(x)-- -----------------(x)--
| | | | | | | | | | 32 | 33 | | 31(x) | |
---------------(x)-- --(x)----(x)--------- ---------(x)-------- -----------------------
| | | 36 | | 34 | 35 | | | | | | | | | |
============ ============ ============ =============
M5 M6 M7 M8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | | | | | (x) 3 | | | 2 (x) | | | | |
--(x)----------(x)-- --------------------- ----- ---------------- --(x)-----------------
| | | 6 | | | | | | (x) 5 | | | 4 | | |
--------------------- ---------------------- --------------------- -----------------------
| | (x) 9 | | (x) 8 | | | | | | | 7(x) | |
--------------------- ---------------------- --------------------- ----------------------
| | (x)12 | | | 11(x) | | | | | | 10(x) | |
============ ============ =(x)========= =============
| | | | | | 14(x) | | 13 | | | | | (x)15 |
---------(x)-------- ---------------------- ---------------------- -----------------------
| | 17 | | | | | | | 16(x) | | | | (x)18 |
--------------------- --------------------- ---------------------- -----------------------
| | 20(x) | | | | | | 19(x) | | | | | 21 |
--------------------- --(x)---------------- ----------------(x)-- --- -------------(x)--
| | 23 | | | 22 | | | | | | 24 | | | | |
=====(x)===== ============ ============ =============
| | | | | 25(x) | | | | (x) 27 | | (x) 26 | |
--------------------- --------------------- --------------------- -----------------------
| | | | | 28(x) | | | | (x)30 | | | 29(x) |
--(x)--------------- ----------------(x)-- --------------------- ----------------------
| 31 | | | | | | 33 | | | | | | | 32 | |
--------------------- --------------------- ---------------------- ---------(x)----------
| 34(x) | | | | (x) 36 | | (x)35 | | | | | |
============ ============ ============ =============
M9 M10 M11 M12
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1(x) | | | | (x) 3 | | | 2 | | | | | |
--------------------- --------------------- ---------(x)--------- -----------------------
| 4(x) | | | | (x) 6 | | | | | | | 5 (x) |
--------------------- ---------------------- ----------------(x)-- -----------------------
| 7 | | | | | | | | | | 9 | | | 8 (x) |
--(x)---------------- --(x)---------------- ---------------------- -----------------------
| | | | | 10 | | | | | (x)12 | | (x) 11 | |
============ ============ ============ =============
| (x)14 | | | 13(x) | | | | | 15 | | | | |
--------------------- ---------------------- ----------------(x)-- -----------------------
| (x) 17 | | | 16 | | | | | | | | | (x) 18 |
--------------------- --(x)---------------- --(x)--------------- -----------------------
| (x)20 | | | | | | | 19 | | | | | (x) 21 |
--------------------- --------------------- ---------------------- -----------------------
| | | | | | 23(x) | | 22(x) | | | | (x) 24 |
============ ============ ============ =============
| | (x)27 | | | 26(x) | | 25(x) | | | | | |
--------------------- --------------------- --------------------- -----------------------
| | (x) 30 | | (x) 29 | | | | | | | 28(x) | |
--------------------- --------------------- ---------------------- ----------------------
| | | 33 | | | | | | | 32 (x) | | 31(x) | |
----------------(x)- ---------------(x)-- --------------------- ----------------------
| | | | | | | 36 | | (x) 35 | | | 34(x) | |
============ ============ ============ =============
M13 M14 M15 M16
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | | | | | 2(x) | | | | | | | | 3 |
--(x)---------------- ---------------------- --------------------- -----------------(x)--
| | | | | 4(x) | 6 | | | | | | | 5 | |
--------------------- ----------------(x)-- --------------------- --(x)---(x)----------
| | | | | | 8 | | | | | | | 7 | | 9 |
----------------(x)-- ---------(x)--------- --------------------- -----------------(x)--
| | | 12 | | 10 | | | | | 11 | | | | | |
============ =(x)========= =====(x)==(x)= =============
| | 14 | | | | | | | 13 | | 15 | | | | |
--(x)---(x)---(x)-- --------------------- --(x)---------------- -----------------------
| 16 | | 18 | | | | | | | 17 | | | | | |
---------------------- ----------------(x)-- ---------(x)--------- -----------------------
| | | | | | | 21 | | 19 | | | | | 20 | |
---------------------- --------------------- --(x)---------------- ---------(x)----(x)--
| | | | | (x) 23 | | | | | | | 22 | | 24 |
============ ============ ============ =(x)==========
| | | | | 25 | | 27 | | | | | | | 26 | |
---------(x)-------- --(x)----------(x)-- --------------------- ----------(x)----------
| | 29 | | | | | | | | | 30 | | 28 | | |
--(x)---------------- --------------------- ----------(x)---(x)-- --(x)-----------------
| 31 | (x) 33 | | | | | | | 32 | | | | | |
--------------------- --------------------- --(x)--------------- -----------------------
| | 35(x) | | | | | | 34 | (x) 36 | | | | |
============ ============ ============ =============
BET TABLE (9 no.)
----------------
(x = no. in matrices)
BET COST PROFIT
- x= 1 9 36- 9=27
- x= 1 9 36-18=18
(18)
- x= 1 9 36-27= 9
(27)
- x= 2 18 72-45=27
(45)
- x= 2 18 72-63= 9
(63)
- x= 3 27 108-90=18
(90)
- x= 4 36 144-126=18
- x= 5 45 180-171= 9
(171)
- x= 7 63 252-234=18
(234)
- x= 9 81 324-315= 9
( 315)
- x=12 108 432-423= 9
(423)
- x=16 144 576-567= 9
(567)
- x=22 198 792-765=27
(765)
- x=29 261 1044-1026=18
(1026)
- x=39 351 1404-1377=27
(1377)
- x=52 468 1872-1845=27
(1845)
- x=69 621 2484-2466=18
(2466)
- x=92 828 3312-3294=18
(3294)
---------------------------------------------------------- CASINO LIMIT X= 100
- x=123 1107 4428-4401=27
(4401)
- x=164 1476 5904-5877=27
(5877)
HOW TO PLAY ?
- sunt posibile 2 moduri de joc :
1) – mod 1 : - intreg. Se joaca numerele din matricile de baza, care lucreaza independent – conform BET TABLE.
2) – mod 2 : - jumatate, conform pozitiilor notate cu (x)-INSIDE.
{-2 game modes are possible:
1) – mode 1: - whole. Play the numbers in the basic matrices, which works independently – according to BET TABLE.
2) – mode 2: - half, according to the positions denoted with (x)-INSIDE}
{-2 modes de jeu sont possibles :
1) - mode 1: - intégreur. Jouez les nombres dans les matrices de base, qui fonctionne indépendamment - selon BET TABLE.
2) - mode 2: - moitié, selon les positions indiquées avec (x)-INSIDE}
Pentru exemplificare, vom folosi pozitiile notate cu (x) – INSIDE. Se joaca pe serii de numere, pornind de la (1xM1) si adaugand – secvential – celelalte matrici. Matricile care pierd, se dubleaza. La SUMA PROFIT>0, toate matricile active (necastigatoare), se reseteaza pe pozitia ‘’x1’’ (NEW session). Modul de joc : cicling !
La un bet>12, se adauga si numarul ZERO !
Ultimul numar extras (LAST) se refera la matricea de baza si NU la numerele adiacente, chiar daca profitul poate proveni din aceste numere !
E=Engulf (apartine, cuprins in…)
{ For example, we will use the positions denoted with (x) – INSIDE. It is played on series of numbers, starting from (1xM1) and adding – sequential – the other matrices. The matrices that loses, doubles. At the PROFIT amount > 0, all active (non-uniting) matrices is reset to the position ' ' X1 ' ' (NEW session). Gameplay: Cicling!
At a bet > 12, add the number ZERO!
The last number extracted (LAST) refers to the base matrix and NOT to adjacent numbers, even if the profit can come from these numbers!
E = Engulf (belongs, contained in...)}
{ Par exemple, nous utiliserons les positions indiquées par (x)- INSIDE. Il est joué sur une série de nombres, à partir de (1xM1) et en ajoutant - séquentiel - les autres matrices. Les matrices qui perd, double. Au montant PROFIT >0, toutes les matrices actives (non-unitaires) sont réinitialisées à la position ' ' X1 ' ' (NEW session). Gameplay: Cicling!
Lors d'un pari >12, ajoutez le numéro ZERO !
Le dernier numéro extrait (LAST) se réfère à la matrice de base et non aux nombres adjacents, même si le profit peut provenir de ces chiffres!
E - Engulf (appartient, contenu dans...)}
EX.(E.G.)
- |->NEW |->NEW
SPIN 1. 2. 3. 4. | 5. 6. | 7.
M1 x1 x2 x4 x8 x1 x2 x1
M2 - (x1) - - - - -
M3 - x1 (x2) - - -
M4 - x1 (x1) - -
-------------------------------------------------------------
M5 - x1 (x2) -
M6 - x1 x1
M7 - x1
M8 -
-------------------------------------------------------------
- Play : 1xM1 ; LAST=28
- Play : 2xM1+1xM2+ZERO=1 ; LAST=34 E M2
- Play : 4xM1+1xM3+ZERO=2 ; LAST=9
- Play : 8xM1+2xM3+1xM4+ZERO=3 ; LAST=19 E M3
- profit=30 (all active matrices on pos.’’x1’’ – NEW session)
- Play : 1xM1+1xM4+1xM5+ZERO=1 ; LAST=16 E M4
- Play : 2xM1+2xM5+1xM6+ZERO=2 ; LAST=17 E M5 – profit=45 (NEW)
VAR. II
=====
O alta metoda de calcul a variantei probabile pentru fiecare numar al ruletei :
{ Another method of calculating the probable variation for each roulette number:}
{ Une autre méthode de calcul de la variation probable pour chaque numéro de roulette:}
Combination of matrices :
Pos.=no.(LAST)
----
- 1-4-6-7-8-9-12-14-15-16-17-18-20-21-22-23-27-29-30-31-33-34-35-36 (24 no.)
- 2-4-5-6-8-9-10-12-13-15-16-17-19-21-22-23-24-25-27-30-31-32-35 (23 no.)
- 3-4-5-6-7-8-9-10-11-13-14-16-18-19-20-22-23-24-25-26-28-29-32-33-36 (25 no.)
- 1-2-3-4-6-7-8-10-11-14-15-17-18-19-20-21-23-25-26-27-29-30-32-33 (24 no.)
- 2-3-5-6-7-8-9-11-12-13-16-18-19-20-21-22-24-26-27-28-30-31-34-35 (24 no.)
- 1-2-3-4-5-6-8-9-10-12-13-16-17-20-21-23-25-26-27-28-29-31-34-35-36 (25 no.)
- 1-3-4-5-7-8-9-10-14-15-17-18-20-21-22-24-26-27-28-29-30-32-33-36 (24 no.)
- 1-2-3-4-5-6-7-8-10-11-14-15-18-21-22-23-24-25-27-28-29-31-33-34-36 (25 no.)
- 1-2-3-5-6-7-9-10-12-15-15-17-19-20-22-23-24-25-26-28-30-31-32-34-35 (25 no.)
- 2-3-4-6-8-10-13-15-16-17-18-21-23-24-25-26-27-29-30-31-32-36 (22 no.)
- 3-4-5-8-11-13-14-15-17-18-19-21-22-24-25-26-28-30-31-32-33-34-36 (23 no.)
- 1-2-5-6-9-12-13-14-15-16-17-18-19-20-22-23-25-27-28-29-31-32-33-34-35 (25 no.)
- 2-3-5-6-10-11-12-13-15-16-17-19-20-23-24-26-27-28-29-30-32-34-35-36 (24 no.)
- 1-3-4-7-8-11-12-14-15-16-17-18-20-21-22-25-27-28-29-30-31-33-35-36 (24 no.)
- 1-2-4-7-8-9-10-11-12-13-14-15-17-18-19-21-22-25-26-29-30-32-34-35-36 (25 no.)
- 1-2-3-5-6-9-10-12-13-14-16-17-18-19-23-24-26-27-29-30-31-33-35-36 (24 no.)
- 1-2-4-6-7-9-10-11-12-13-14-15-16-17-19-20-23-24-27-30-31-32-33-34-36 (25 no.)
- 1-3-4-5-7-8-10-11-12-14-15-16-18-19-21-24-25-26-28-29-31-32-33-34-35 (25 no.)
- 2-3-4-5-9-11-12-13-15-16-17-18-19-22-24-25-26-27-30-32-33-34-35-36 (24 no.)
- 1-3-4-5-6-7-9-12-13-14-17-20-22-23-24-26-27-28-30-31-33-34-35 (23 no.)
- 1-2-4-5-6-7-8-10-11-14-15-18-21-22-23-24-25-26-27-28-29-31-32-34-36 (25 no.)
- 1-2-3-5-7-8-9-11-12-14-15-19-20-21-22-24-25-26-28-29-32-33-35-36 (24 no.)
- 1-2-3-4-6-8-9-10-12-13-16-17-20-21-23-24-25-26-27-29-30-31-34-36 (24 no.)
- 2-3-5-7-8-9-10-11-13-16-17-18-19-20-21-22-23-24-26-27-28-30-31-34-35 (25 no.)
- 2-3-4-6-8-9-10-11-12-14-15-18-19-21-22-23-25-26-27-28-32-33-35-36 (24 no.)
- 3-4-5-6-7-9-10-11-13-15-16-18-19-20-21-22-23-24-25-26-28-29-32-33-36 (25 no.)
- 1-2-4-5-6-7-8-10-12-13-14-16-17-19-20-21-23-24-25-27-28-30-33-34-35 (25 no.)
- 3-5-6-7-8-9-11-12-13-14-18-20-21-22-24-25-26-27-28-31-33-34-35-36 (24 no.)
- 1-3-4-6-7-8-10-12-13-14-15-16-18-21-22-23-26-29-31-32-33-35-36 (23 no.)
- 1-2-4-5-7-9-10-11-13-14-15-16-17-19-20-23-24-27-30-31-32-33-34-35-36 (25 no.)
- 1-2-5-6-8-9-10-11-12-14-16-17-18-20-21-23-24-28-29-30-31-33-34-35 (24 no.)
- 2-3-4-7-9-10-11-12-13-15-17-18-19-21-22-25-26-29-30-32-33-34-35-36 (24 no.)
- 1-3-4-7-8-11-12-14-16-17-18-19-20-22-25-26-27-28-29-30-31-32-33-35-36 (25 no.)
- 1-5-6-8-9-11-12-13-15-17-18-19-20-21-23-24-27-28-30-31-32-34-35-36 (24 no.)
- 1-2-5-6-9-12-13-14-15-16-18-19-20-22-24-25-27-28-29-30-31-32-33-34-35 (25 no.)
- 1-3-6-7-8-10-11-13-14-15-16-17-19-21-22-23-25-26-28-29-30-32-33-34-36 (25 no.)
HOW TO PLAY ?
- se joaca pozitia corespunzatoare ultimului numar extras (LAST), plus ZERO;
- se dubleaza (tripleaza) pozitia necastigatoare si se adauga pozitia ultimului no. (LAST).
{- play the corresponding position of the last extracted number (LAST), plus ZERO;
- double (triple) the position of the undoing and add the position of the last no. (LAST).}
{- jouer la position correspondante du dernier numéro extrait (LAST), plus ZERO;
- doubler (triple) la position de la perte et ajouter la position du dernier no. (LAST).}
EX.
- LAST=29
- Play : 1x(pos.29) + ZERO=1 ; LAST=11
- Play : 2x(pos.29) + 1x(pos.11) + ZERO=2 ; LAST=16 E (pos.29)
- Play : 2x(pos.11) + 1x(pos.16) + ZERO=2 : LAST=33 E (pos.11),(pos.16) – profit=13
- Play : 1x(pos.33) + ZERO=1 ; LAST=12 E (pos.33) – profit=23
- Play : 1x(pos.12) + ZERO=1 ; LAST=36
- Play : 2x(pos.12) + 1x(pos.36) + ZERO=2 ; LAST=33 E (pos.12),(pos.36) – profit=28
- Play : 1x(pos.33) + ZERO=1 ; LAST=2
- Play : 2x(pos.33) + 1x(pos.2) + ZERO=2 ; LAST=25 E (pos.2),(pos.33) – profit=35
- Play : 1x(pos.25) + ZERO=1 ; LAST=9 E (pos.25) – profit=46
- Play : 1x(pos.9) + ZERO=1 ; LAST=0(ZERO) - profit=56
Comentarii
Trimiteți un comentariu