ROULETTE 14_2
ROULETTE 14_2
**************
(DRAGU’s method)
(continuity R.14_1)
VAR. II (12 matrices x 12 no.)
=====
Daca se dezvolta matricea principala pe sub-matricile S(i), cu step 1, 2, 3, 4 – se pot obtine 4 grupuri G , (respectiv, matrici), de forma :
{ If you develop the main matrix on sub-matrices S (i), with step 1, 2, 3, 4 – you can get 4 G groups, (respectively, matrices), of the form:}
{ Si vous développez la matrice principale sur les sous-matricile S(i), avec l'étape 1, 2, 3, 4 - vous pouvez obtenir 4 groupes G, (respectivement, matrices), de la forme:}
G1 : S1+S3+S5 -> 1-2-3-4 // 9-10-11-12 // 17-18-19-20
S7+S9+S2 -> 25-26-27-28 // 33-34-35-36 // 5-6-7-8
S4+S6+S8 -> 13-14-15-16 // 21-22-23-24 // 29-30-31-32
matrices
M1 : 1-2-3-4-9-10-11-12-17-18-19-20
M2 : 5-6-7-8-25-26-27-28-33-34-35-36
M3 : 13-14-15-16-21-22-23-24-29-30-31-32
G2 : S1+S4+S7 -> 1-2-3-4 // 13-14-15-16 // 25-26-27-28
S2+S5+S8 -> 5-6-7-8 // 17-18-19-20 // 29-30-31-32
S3+S6+S9 -> 9-10-11-12 // 21-22-23-24 // 33-34-35-36
matrices
M4 : 1-2-3-4-13-14-15-16-25-26-27-28
M5 : 5-6-7-8-17-18-19-20-29-30-31-32
M6 : 9-10-11-12-21-22-23-24-33-34-35-36
G3 : S1+S5+S9 -> 1-2-3-4 // 17-18-19-20 // 33-34-35-36
S4+S8+S3 -> 13-14-15-16 // 29-30-31-32 // 9-10-11-12
S7+S2+S6 -> 25-26-27-28 // 5-6-7-8 // 21-22-23-24
matrices
M7 : 1-2-3-4-17-18-19-20-33-34-35-36
M8 : 9-10-11-12-13-14-15-16-29-30-31-32
M9 : 5-6-7-8-21-22-23-24-25-26-27-28
G4 : S1+S6+S2 -> 1-2-3-4 // 21-22-23-24 // 5-6-7-8
S7+S3+S8 -> 25-26-27-28 // 9-10-11-12 // 29-30-31-32
S4+S9+S5 -> 13-14-15-16 // 33-34-35-36 // 17-18-19-20
matrices
M10 : 1-2-3-4-5-6-7-8-21-22-23-24
M11 : 9-10-11-12-25-26-27-28-29-30-31-32
M12 : 13-14-15-16-17-18-19-20-33-34-35-36
Representation :
M1 M2 M3
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 | 2 (x) 3 | | | | | | | | |
--(x)---------------- ---------(x)--------- ----------------------
| 4 | | | | | 5 | 6 | | | | |
----------------(x)-- ----------------(x)-- ----------------------
| | | 9 | | 7 | 8 | | | | | |
--(x)---------------- --(x)----(x)-------- ----------------------
| 10 | 11(x)12 | | | | | | | | |
============ ============ =====(x)==(x)=
| | | | | | | | | 13 | 14 | 15 |
---------(x)---(x)-- ---------------------- --(x)----------------
| | 17 | 18 | | | | | | 16 | | |
---------------------- ---------------------- ----------------------
| 19 | 20 | | | | | | | | | 21 |
--(x)---(x)--------- ---------------------- -----------------(x)--
| | | | | | | | | 22(x)23 | 24 |
============ =(x)========= ============
| | | | | 25 | 26(x)27 | | | | |
--------------------- ---------------------- ---------(x)----(x)--
| | | | | 28(x) | | | | 29 | 30 |
--------------------- ---------------------- ----------------------
| | | | | | | 33 | | 31 | 32 | |
--------------------- ----------------(x)-- --(x)----(x)--------
| | | | | 34(x)35 | 36 | | | | |
============ ============ ============
M4 M5 M6
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 (x) 2 | 3 | | | | | | | | |
----------------(x)-- --------------------- ---------------------
| 4 | | | | | 5 (x) 6 | | | | |
--(x)---------------- --------------------- ---------------------
| | | | | 7 (x) 8 | | | | | 9 |
--------------------- --------------------- ----------------(x)--
| | | | | | | | | 10 (x)11 | 12 |
=(x)========= ============ ============
| 13 | 14(x)15 | | | | | | | | |
--------------------- --------------------- ---------------------
| 16(x) | | | | 17 | 18 | | | | |
--------------------- --(x)---(x)---(x)-- ----------------(x)--
| | | | | 19 | 20 | | | | | 21 |
--------------------- --------------------- --(x)---(x)---------
| | | | | | | | | 22 | 23 | 24 |
=(x)==(x)==(x)= ============ =========(x)=
| 25 | 26 | 27 | | | | | | | | |
-------------------- - ---------------(x)-- ----------------------
| 28 | | | | (x)29 | 30 | | | | |
--(x)---------------- --------------------- ----------------(x)--
| | | | | 31 | 32(x) | | | | 33 |
--------------------- --(x)---------------- --(x)----------------
| | | | | | | | | 34 | 35 (x)36 |
============ ============ ============
M7 M8 M9
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 | 2 | 3 | | | | | | | | |
--(x)---(x)---(x)-- --------------------- --------------------
| 4 | | | | | | | | | 5 (x) 6 |
--------------------- --------------------- ---------------------
| | | | | | (x) 9 | | 7 | 8 (x) |
--------------------- --(x)---------------- --(x)----------------
| | | | | 10 | 11 | 12 | | | | |
============ =====(x)==(x)= ============
| | | | | 13 | 14 | 15 | | | | |
---------(x)--------- --(x)---------------- ----------------------
| | 17 | 18 | | 16 | | | | | | |
----------------(x)-- --------------------- ----------------(x)--
| 19(x)20 | | | | | | | | | 21 |
--------------------- --------------------- --(x)---(x)---------
| | | | | | | | | 22 | 23 | 24 |
============ ============ =========(x)=
| | | | | | | | | 25 | 26 | 27 |
--------------------- --------(x)--------- --(x)----(x)---------
| | | | | | 29 | 30 | | 28 | | |
---------------- ----- --(x)----------(x)-- ----------------------
| | (x)33 | | 31 | 32 | | | | | |
--(x)--------------- ---------(x)--------- ---------------------
| 34 | 35(x)36 | | | | | | | | |
============ ============ ============
M10 M11 M12
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 (x) 2 | 3 | | | | | | | | |
----------------(x)-- --------------------- ---------------------
| 4 | 5 | 6 | | | | | | | | |
--(x)---(x)--------- ----------------(x)-- ----------------------
| 7 | 8 | | | | | 9 | | | | |
--------------------- ---------(x)--------- ---------------------
| | | | | 10 | 11 | 12 | | | | |
============ =(x)======(x)= =(x)======(x)=
| | | | | | | | | 13 | 14 | 15 |
----------------- ---- --------------------- ---------(x)---------
| | | | | | | | | 16 | 17 | 18 |
--------------------- ---------------------- --(x)-----------(x)--
| | (x)21 | | | | | | 19 | 20 | |
--------------------- --------------------- ---------(x)---------
| 22 | 23 | 24 | | | | | | | | |
=(x)==(x)==(x)= =(x)==(x)===== ============
| | | | | 25 | 26 | 27 | | | | |
--------------------- ----------------(x)-- ---------------------
| | | | | 28(x)29 | 30 | | | | |
--------------------- --------------------- ----------------(x)--
| | | | | 31 | 32 | | | | | 33 |
------------------- -- --(x)---(x)--------- --(x)----------------
| | | | | | | | | 34 | 35 (x)36 |
============ ============ ============
BET TABLE (12 no.)
----------------
(x = no. in matrices)
BET COST PROFIT
- x= 1 12 36-12=24
- x= 1 12 36-24=12
(24)
- x= 2 24 72-48=24
(48)
- x= 3 36 108-84=24
(84)
- x= 4 48 144-132=12
(132)
- x= 6 72 216-204=12
(204)
- x= 9 108 324-312=12
(312)
- x= 14 168 504-480=24
(480)
- x= 21 252 756-732=24
(732)
- x= 31 372 1116-1104=12
(1104)
- x= 47 564 1692-1668=24
(1668)
- x= 70 840 2520-2508=12
(2508)
----------------------------------------------------------- CASINO LIMIT X=100
- x=105 1260 3780-3768=12
(3768)
HOW TO PLAY ?
1) MODE 1 – (intreg) (whole)
- jucati numai jetoane mici (ex. 10 bani, 1 cent, etc). JUCATI RESPONSABIL ! Metodele prezentate sunt ‘’extra-income’’, nu sunt metode de IMBOGATIRE !
- fiecare matrice joaca independent, conform BET TABLE;
- pe ultimul numar extras, vor apare castigatoare 4 matrici . Se joaca aceste matrici (suprapuse), la care se adauga si matricile corespunzatoare ultimului numar (LAST) !
- pentru ca softul casinoului are ‘’prostul’’ obicei de a dubla, tripla - ultimul numar (LAST), trebuie jucat si acest numar (daca este cazul !);
- matricile “castigatoare” (dar active !), se initializeaza pe pos.1 (x=1), celelalte urmeaza pozitia din BET TABLE.
- daca SUMA PROFIT >0, toate matricile active se aduc pe pos.1 (x1) si se incepe o noua sesiune (NEW).
- la un profit care vi se pare rezonabil, folositi metoda SCALPING (taie motzul si fugi !)
- ATENTIE la numarul ZERO !
{-Play only small tokens (e.g. 10 Bani, 1 cent, etc.). PLAY RESPONSIBLY! The methods presented are ' ' extra-income ' ', there are no methods to enrich!
-Each matrix plays independently, according to BET TABLE;
-On the last number extracted, the winners will appear 4 matrices. Play these matrices (overlapped), plus the matrices corresponding to the last number (LAST)!
-Because the casino software has the ' ' Fool ' ' habit of double, triple-the last number (LAST), the number must be played (if any!);
-the "winning" matrices (but active!), initializes on POS. 1 (x = 1), the other follows the position in BET TABLE.
-If the PROFIT amount > 0, all active matrices are brought to Pos. 1 (x1) and start a new session (NEW).
-At a profit that you find reasonable, use the SCALPING method (cut … and run!)
-ATTENTION to number ZERO!}
{-Jouer uniquement les petits jetons (p. ex. 10 Bani, 1 cent, etc.). PLAY RESPONSIBLY! Les méthodes présentées sont ' extra-revenu ', il n'y a pas de méthodes à enrichir!
-Chaque matrice joue indépendamment, selon BET TABLE;
-Sur le dernier numéro extrait, les gagnants apparaîtront 4 matrices. Jouez à ces matrices (chevauchées), plus les matrices correspondant au dernier numéro (LAST)!
-Parce que le logiciel de casino a l'habitude ' ' Fool ' ' de double, triple-le dernier numéro (LAST), le nombre doit être joué (le cas échéant!);
-les matrices "gagnantes" (mais actives!), paraphé sur POS. 1 (x=1), l'autre suit la position en BET TABLE.
-Si le montant de profit >0, toutes les matrices actives sont apportées à Pos. 1 (x1) et commencent une nouvelle session (NEW).
-À un profit que vous trouvez raisonnable, utilisez la méthode SCALPING (couper … et courir!)
-ATTENTION au numéro ZERO!}
RECOMANDARE : la profit de 30-40 x (bet=1), parasiti jocul, asteptati si reveniti cu o noua sesiune de lucru (NEW).
NOTA : (-), (x1) – numar extras(LAST) ; E = engulf (apartine, cuprins in…)
{ RECOMMENDATION: At profit of 30-40 x (bet = 1), leave the game, wait and return with a new work session (NEW).
NOTE: (-), (x1) – Number extracted (LAST); E = Engulf (belongs, contained in...)}
{ RECOMMENDATION: Au profit de 30-40 x (bet=1), quitter le jeu, attendre et revenir avec une nouvelle session de travail (NEW).
EX.
|->NEW
SPIN 1. 2. 3. | 4. 5.
M1 - - - | -
M2 (-) x1 (x1) | (x1)
M3 - (-) x1 | x1
------------------------------------------------
M4 - - (-) | x1
M5 (-) (x1) x1 | (x1)
M6 - - - | -
--------------------------------------------------
M7 - - - | -
M8 - (-) x1 | x1
M9 (-) x1 (x1) | (x1)
--------------------------------------------------
M10 (-) x1 x1 | (x1)
M11 - (-) (x1) | x1
M12 - - - | -
- LAST=5 E M2, M5, M9, M10
- Play : 1xM2+1xM5+1xM9+1xM10+ZERO=2
LAST=30 E M3, M5, M8, M11
- Play : 1xM2+1xM9+1xM10+(1xM3+1xM5+1xM8+1xM11)+ZERO=3
LAST=28 E M2, M4, M9, M11 - profit=8 (all active matrix on pos.1 – NEW)
- Play : 1xM3+1xM5+1xM8+1xM10+(1xM2+1xM4+1xM9+1xM11)+ZERO=4
LAST=8 E M2, M5, M9, M10 - profit=53
2) – MODE 2 – (intreg) (whole)
- se joaca pe serii de numere. Se porneste cu (1xM1+ZERO=1) si se continua – secvential – cu urmatoarele matrici. Matricile joaca independent, conform BET TABLE.
{- is played on series of numbers. It starts with (1xM1 + ZERO = 1) and continues – sequentially – with the following matrices. Matricile play independently, according to BET TABLE.}
{- est joué sur une série de nombres. Il commence par (1xM1+ ZERO = 1) et se poursuit - séquentiellement - avec les matrices suivantes. Matricile jouer de façon indépendante, selon BET TABLE.}
EX.(E.G.)
- |->NEW |->NEW |->NEW
SPIN 1. 2. 3. 4. | 5. | 6. | 7. 8. 9.
M1 (x1)
M2 - x1 x1 (x2)
M3 - (x1) -
----------------------------------------------------------------------------------
M4 - x1 (x1)
M5 - x1 (x1)
M6 - x1 x1
----------------------------------------------------------------------------------
M7 - x1
M8 -
M9
-----------------------------------------------------------------------------------
- Play : 1xM1+ZERO=1 ; LAST=17 E M1 – profit=23
- Play : 1xM2+ZERO=1 ; LAST=20
- Play : 1xM2+1xM3+ZERO=1 ; LAST=22 E M3
- Play : 2xM2+1xM4+ZERO=1 ; LAST=5 E M2 – profit=56
- Play : 1xM4+1xM5+ZERO=1 ; LAST=15 E M4 - profit=67
- Play : 1xM5+1xM6+ZERO=1 ; LAST=7 E M5 - profit=78
3) – MODE 3 - half
- se joaca pozitiile notate cu (x)-INSIDE;
- in acest exemplu, vom juca pe serii de numere. Se incepe cu (1xM1+ZERO=1) si se continua – secvential – cu celelalte matrici. Matricile care pierd, se dubleaza.
{- play the positions denoted with (x)-INSIDE;
- in this example, we play on series of numbers. It starts with (1xM1 + ZERO = 1) and continues – sequential – with the other matrices. The matrices that loses, doubles.}
{- jouer les positions dénotées avec (x)-INSIDE;
- dans cet exemple, nous jouons sur une série de nombres. Il commence par (1xM1+ZERO= 1) et se poursuit - séquentiel - avec les autres matrices. Les matrices qui perds, double.}
EX.(E.G.)
- |->NEW |->NEW
SPIN 1. 2. | 3. 4. | 5. 6.
M1 (x1)
M2 - x1 x1 (x2)
M3 - - (x1)
-------------------------------------------------------
M4 - (x1)
M5 - x1
M6 -
-------------------------------------------------------
- Play : 1xM1+ZERO=1 ; LAST=11 E M1 - profit=8
- Play : 1xM2+ZERO=1 ; LAST=0 (ZERO !) – profit=34 (NEW)
- Repeat spin 2 : LAST=1
- Play : 2xM2+1xM3+ZERO=1 ; LAST=27 E M2,M3 – profit=50 (NEW)
- Play : 1xM4+ZERO=1 ; LAST=31 E M4 - profit=58
Comentarii
Trimiteți un comentariu