ROULETTE 33
ROULETTE 33 (INSIDE)
************
(DRAGU’s method)
Daca reprezentam cele 36 de numere ale ruletei (except ZERO) intr-o matrice de 6 linii x 6 coloane
{ If we represent the 36 number of roulette numbers (except ZERO) in an array of 6 lines x 6 columns}
{ Si nous représentons le nombre de 36 numéros de roulette (sauf ZERO) dans un tableau de 6 lignes x 6 colonnes}
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
se pot alege 13 sub-matrici (10 x 3 numere si 3 x 2 numere), dezvoltare pe verticala, de forma :
{ you can choose 13 sub-matrices (10 x 3 numbers and 3 x 2 numbers), vertical development, form:}
{ vous pouvez choisir 13 sous-matrices (10 x 3 nombres et 3 x 2 nombres), développement vertical, forme :}
S1 : 1 – 7 - 13 ; S2 : 19 - 25 ; S3 : 31 – 2 - 8 ; S4 : 14 – 20 – 26 ;
S5 : 32 – 3 - 9 ; S6 : 15 - 21 ; S7 : 27 – 33 – 4 : S8 : 10 – 16 – 22 ;
S9 : 28 – 34 – 5 : S10 : 11 – 17 ; S11 : 23 – 29 – 35 ; S12 : 6 – 12 – 18 ; S13 : 24 – 30 - 36
VAR. I
=====
Desfasurare grafica : {graphical progress:} {progrès graphiques:}
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
- o o o o o o - - - - - - -
- o o o - - o - - o o - - -
- o - o - - - - o - - o o o
- o - - - - o o o - - - o o
- o - - - - - o o o o o - -
- - o o - - - o o - - - o o
- - o - o o - o - o o - - -
- - o - - - o o - - - o o o
- - - o o o o - o - - o - -
- - - - o o - - - o o - o o
Matrices :
- S1 + S2 + S3 + S4 + S5 + S6
- S1 + S2 + S3 + S6 + S9 + S10
- S1 + S3 + S8 + S11 + S12 + S13
- S1 + S6 + S7 + S8 + S12 + S13
- S1 + S7 + S8 + S9 + S10 + S11
- S2 + S3 + S7 + S8 + S12 + S13
- S2 + S4 + S5 + S7 + S9 + S10
- S2 + S6 + S7 + S11 + S12 + S13
- S3 + S4 + S5 + S6 + S8 + S11
- S4 + S5 + S9 + S10 + S12 +S13
Matricile devin, dupa sortare :
{ Matrices become, after sorting:}
{ Matricile devenir, après le tri :}
M1 : 1 – 2 – 3 – 7 – 8 – 9 – 13 – 14 – 15 – 19 – 20 – 21 – 25 – 26 – 31 – 32 (16 no.)
M2 : 1 – 2 – 5 – 7 – 8 – 11 – 13 – 15 – 17 – 19 – 21 – 25 – 28 – 31 – 34 (15 no.)
M3 : 1 – 2 – 6 – 7 – 8 – 10 -12 – 13 – 16 – 18 – 22 – 23 – 24 – 29 – 30 – 31 – 35 – 36 (18 no)
M4 : 1 – 4 – 6 – 7 – 10 – 12 – 13 – 15 – 16 – 18 – 21 – 22 – 24 – 27 – 30 – 33 – 36 (17 no.)
M5 : 1 – 4 – 5 – 7 – 10 – 11 – 13 – 16 – 17 – 22 – 23 – 27 – 28 – 29 – 33 – 34 – 35 (17 no.)
M6 : 2 – 4 – 6 – 8 – 10 – 12 – 16 – 18 – 19 – 22 – 24 – 25 -27 – 30 – 31 – 33 – 36 (17 no.)
M7 : 3 – 4 – 5 – 9 – 11 – 14 – 17 – 19 – 20 – 25 – 26 – 27 – 28 – 32 – 33 – 34 (16 no.)
M8 : 4 – 6 – 12 – 15 – 18 – 19 – 21 – 23 – 24 – 25 – 27 – 29 – 30 – 33 – 35 – 36 (16 no.)
M9 : 2 – 3 – 8 – 9 – 10 – 14 – 15 – 16 – 20 – 21 – 22 – 23 – 26 – 29 – 31 – 32 – 35 (17 no.)
M10 : 3 – 5 – 6 – 9 – 11 – 12 – 14 – 17 – 18 – 20 – 24 – 26 – 28 – 30 – 32 – 34 – 36 (17 no.)
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1 M2 M3 M4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 (x) 3 | | 1 (x) 2 | | | 1 (x) 2 | | | 1 | | |
--(x)---------------- --------------------- ----------------(x)- --(x)-----------------
| | | | | | 5 | | | | | 6 | | 4 | (x) 6 |
------------------ --- --------(x)--------- --------(x)--------- ----------------------
| 7 (x) 8 | 9 | | 7 | 8 | | | 7 | 8 | | | 7 | | |
----------------(x)-- --(x)--------------- --(x)-----------(x)- --(x)-----------------
| | | | | | 11 (x) | | 10 | | 12 | | 10 | (x)12 |
============ ============ ============ =============
| 13(x)14 | 15 | | 13 | (x)15 | | 13 | | | | 13 | | 15 |
----------------(x)-- --(x)---------------- --(x)----------(x)- --(x)-----------(x)---
| | | | | | 17(x) | | 16 | | 18 | | 16 | | 18 |
--------------------- ---------------------- --------------------- -----------------------
| 19 | 20(x)21 | | 19(x) | 21 | | | | | | | | 21 |
--(x)---------------- ----------------(x)-- ----------------(x)- ----------------(x)--
| | | | | | | | | 22(x)23 | 24 | | 22 | | 24 |
============ ============ ============ =(x)==========
| 25 | 26 | | | 25 (x) | | | | | | | | (x) 27 |
--(x)----(x)-------- --------------------- ---------------------- -----------------------
| | | | | 28 (x) | | | | 29 (x)30 | | | (x) 30 |
---------------------- --------------------- --(x)---------------- -----------------------
| 31 | 32 | | | 31 | | | | 31 | | | | | (x) 33 |
--(x)---(x)--------- --(x)---------------- --------------------- -----------------------
| | | | | 34 | | | | | 35 (x) | | | (x) 36 |
============ ============ ============ =============
M5 M6 M7 M8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 (x) | | | | 2 (x) | | | | 3 | | | | |
--------------------- ---------------------- ----------------(x)- ----------------------
| 4 (x) 5 | | | 4 | (x) 6 | | 4 (x) 5 | | | 4 | | 6 |
--------------------- --(x)--------------- --------------------- --(x)----------(x)---
| 7 (x) | | | | 8 (x) | | | | 9 | | | | |
--------------------- --(x)--------------- ---------(x)---(x)-- -----------------------
| 10(x)11 | | | 10 | (x)12 | | | 11 | | | | (x) 12 |
============ ============ ============ =============
| 13(x) | | | | | | | | 14 (x) | | | (x) 15 |
--------------------- ---------------(x)-- --------------------- ----------------------
| 16(x)17 | | | 16 | | 18 | | | 17 (x) | | | | 18 |
--------------------- --(x)---------------- --------------------- ----------------(x)--
| | | | | 19 | | | | 19 | 20 (x) | | 19(x) | 21 |
--(x)----(x)-------- ---------------(x)-- --(x)--------------- ----------------------
| 22 | 23 | | | 22(x) | 24 | | | | | | (x) 23 | 24 |
============ ============ ============ ==========(x)=
| | (x)27 | | 25 | | 27 | | 25 | 26 (x)27 | | 25(x) | 27 |
--------------------- --(x)----------(x)-- --(x)---------------- -----------------------
| 28(x)29 | | | | | 30 | | 28 | | | | | 29 | 30 |
--------------------- ---------------------- ---------------------- ---------(x)-----(x)--
| | (x)33 | | 31(x) | 33 | | | 32 (x)33 | | | | 33 |
--------------------- ---------------(x)-- --(x)---------------- -----------------------
| 34(x)35 | | | | | 36 | | 34 | | | | | 35 (x)36 |
============ ============ ============ =============
M9 M10
ZERO ZERO
0 0
============ ============
| (x) 2 | 3 | | | | 3 |
----------------(x)-- ----------------(x)--
| | | | | | 5 | 6 |
--------------------- ---------(x)--------
| | 8 (x) 9 | | | | 9 |
--(x)---------------- ----------------(x)--
| 10 | | | | | 11 | 12 |
============ =====(x)=====
| | 14(x)15 | | | 14 | |
--(x)--------------- -----------------(x)--
| 16 | | | | | 17 | 18 |
--------------------- ----------(x)---------
| | 20(x)21 | | | 20 | |
---------------------- ---------------------
| 22(x)23 | | | | (x) 24 |
============ ============
| | 26(x) | | | 26 | |
--------------------- --(x)----(x)---(x)--
| (x)29 | | | 28 | | 30 |
--------------------- ----------------------
| 31(x)32 | | | | 32 | |
--------------------- --(x)---(x)---(x)--
| | 35(x) | | 34 | | 36 |
============ ============
HOW TO PLAY ?
- sunt posibile 2 moduri de joc :
1) – mod 1 : - intreg
- waiting for trend (3-4 no.)
- fiecare matrice lucreaza independent (x1, x2, x4, x8, x16, etc - martingale)
- se activeaza numai matricile care NU contin cel putin ultimele 3 numere (3 non)
2) – mod 2 : - jumatate – conform pozitiilor notate cu ‘’x’’ (INSIDE);
- matricile necastigatoare se dubleaza (tripleaza);
- se adauga ultimul numar extras (LAST) si se calculeaza numarul ZERO;
- daca SUMA PROFIT>0, toate matricile active se aduc pe ‘’x1’’
- la profit de 30-40 x (bet=1), recomandam sa parasiti sesiunea
- E=Engulf (apartine, cuprins in…) ; LAST=ultimul numar extras
{- 2 game modes are possible:
1) – mode 1: - integer
- waiting for trend (3-4 No.)
- each matrix works independently (x1, x2, x4, x8, x16, etc.-martingale)
- only the matrices that does not contain at least the last 3 numbers (3 non) is activated
2) – mode 2: - half – according to the positions denoted with (x)-INSIDE;
- the non-ageing matrices doubles (triple);
- add the last number extracted (LAST) and calculate the number ZERO;
- if the PROFIT amount > 0, all active matrices is brought to ‘’x1’’(NEW);
- at profit of 30-40 x (bet = 1), we recommend leaving the session
- E = Engulf (belongs, contained in...); LAST= last number extracted}
{- 2 modes de jeu sont possibles :
1) - mode 1: - entier
- en attente de tendance (3-4 No.)
- chaque matrice fonctionne indépendamment (x1, x2, x4, x8, x16, etc.-martingale)
- seulement les matrices qui ne contiennent pas au moins les 3 derniers nombres (3 non) sont activées
2) - mode 2: - moitié - selon les positions indiquées avec (x)-INSIDE;
- les matrices non-vieillissantes doublent (triple);
- ajouter le dernier numéro extrait (LAST) et calculer le nombre ZERO;
- si le montant de profit> 0, toutes les matrices actives sont portées à ‘’x1’’ (NEW) ;
- au profit de 30-40 x (pari 1), nous vous recommandons de quitter la session
- E - Engulf (appartient, contenu dans...); LAST=dernier numéro extrait}
EX.(E.G.)
SPIN 1. 2.
3. 4. 5.
6. 7. 8. 9. 10. 11. 12.
M1
- - -
x1 (x2) (-) (-)
(-) -
M2
- - -
x1 x2 (x4) (-)
- -
M3
(-) - (-) (-)
- (-)
- - (-)
M4
- (-) (-) (-)
- (-)
- - -
M5 (-)
(-) - (-)
- -
- x1 (x2)
M6
- (-) (-) (-)
- -
(-) - -
M7
- (-) -
- (-)
- (-) (-) -
M8 (-) (-)
(-) -
- -
(x1) - (-)
M9 (-)
- - (-)
(-) -
- (-) (-)
M10 -
- (-) -
(-) -
- (-) -
- LAST=29 E M3,M5,M8,M9 ; 2. LAST=4 E M4,M5,M6,M7,M8 ;
- LAST=6 E M3,M4,M6,M8,M10
- M1(3 non), M2(3 non). Play : 1xM1 + 1xM2 + LAST(6)=1 + ZERO=1
LAST=16 E M3,M4,M5,M6,M9
- Play : 2xM1 + 2xM2 + LAST(16)=2 + ZERO=2
LAST=3 E M1,M7,M9,M10
- Play : 4xM2 + LAST(3)=2 + ZERO=2
Last 4 no. <19, so : (19-36)=1
LAST=7 E M1,M2,M3,M4 (profit : 52 – all active matrices on pos.1 !)
- M8(3 non). Play : 1xM8 + LAST(7)=1 + ZERO=1 + 2x(19-36)
LAST=25 E M1,M2,M6,M7,M8 (profit : 72)
- M5(3 non). Play : 1xM5 + LAST(25)=1 + ZERO=1
Last 4 no.= R_ed, so : B_lack=1
LAST=9 E M1,M7,M9,M10
- Play : 2xM5 + LAST(9)=2 + ZERO=2 + 2xB_lack
LAST=29 E M3,M5,M8,M9 (profit : 88)
VAR. II
=====
Desfasurare grafica : {graphical progress:} {progrès graphiques:}
(step 3,5,7,9-cicling)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
- o - - o - - o - - o - - -
- - - o - - o - - o - - - o
- - o - - o - - o - - - o -
- o - - o - - - - o - o - -
- - - o - - o - o - - o - -
- - o - - o - - - - o - - o
- - - - - - o o - - - - o o
- o o - - - - o o - - - - -
- - - o o - - - - o o - - -
- - - - - o - - o - - o o -
- - - - o o - - - o - - - o
- o o - - - o - - - o - - -
- - - o - - - o - - - o o -
Matrices :
M1 : S1+S4+S7+S10 (11 no.)
1-7-13 // 14-20-26 // 27-33-4 // 11-17
{1-4-7-11-13-14-17-20-26-27-33}
M2 : S3+S6+S9+S13 (11 no.)
31-2-8 // 15-21 // 28-34-5 // 24-30-36
{2-5-8-15-21-24-28-30-31-34-36}
M3 : S2+S5+S8+S12 (11 no.)
19-25 // 32-3-9 // 10-16-22 // 6-12-18
{3-6-9-10-12-16-18-19-22-25-32}
M4 : S1+S4+S9+S11 (12 no.)
1-7-13 // 14-20-26 // 28-34-5 // 23-29-35
{1-5-7-13-14-20-23-26-28-29-34-35}
M5 : S3+S6+S8+S11 (11 no.)
31-2-8 // 15-21 // 10-16-22 // 23-29-35
{2-8-10-15-16-21-22-23-29-31-35}
M6 : S2+S5+S10+S13 (10 no.)
19-25 // 32-3-9 // 11-17 // 24-30-36
{3-9-11-17-19-24-25-30-32-36}
M7 : S6+S7+S12+S13 (11 no.)
15-21 // 27-33-4 // 6-12-18 // 24-30-36
{4-6-12-15-18-21-24-27-30-33-36}
M8 : S1+S2+S7+S8 (11 no.)
1-7-13 // 19-25 // 27-33-4 // 10-16-22
{1-4-7-10-13-16-19-22-25-27-33}
M9 : S3+S4+S9+S10 (11 no.)
31-2-8 // 14-20-26 // 28-34-5 // 11-17
{2-5-8-11-14-17-20-26-28-31-34}
M10 : S5+S8+S11+S12 (12 no.)
32-3-9 // 10-16-22 // 23-29-35 // 6-12-18
{3-6-9-10-12-16-18-22-23-29-32-35}
M11 : S4+S5+S9+S13 (12 no.)
14-20-26 // 32-3-9 // 28-34-5 // 24-30-36
{3-5-9-14-20-24-26-28-30-32-34-36}
M12 : S1+S2+S6+S10 (9 no.)
1-7-13 // 19-25 // 15-21 // 11-17
{1-7-11-13-15-17-19-21-25}
M13 : S3+S7+S11+S12 (12 no.)
31-2-8 // 27-33-4 // 23-29-35 // 6-12-18
{2-4-6-8-12-18-23-27-29-31-33-35}
Representation :
M1 M2 M3 M4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 (x) | | | (x) 2 | | | | (x) 3 | | 1 | | |
--------------------- --------------------- --------------------- --(x)---(x)----------
| 4 (x) | | | | 5 (x) | | | (x) 6 | | | 5 | |
--------------------- --------------------- --------------------- ----------------------
| 7 (x) | | | (x) 8 | | | | (x) 9 | | 7 | | |
--------------------- --------------------- --------------------- --(x)-----------------
| (x)11 | | | | | | | 10 | (x)12 | | | | |
============ =========(x)= =(x)========= =====(x)======
| 13 | 14(x) | | | | 15 | | | | | | 13 | 14 | |
--(x)---------------- ---------------------- --------------------- --(x)-----------------
| | 17(x) | | | | | | 16(x) | 18 | | | | |
--------------------- ---------------(x)-- ----------------(x)-- ---------(x)----------
| (x)20 | | | | | 21 | | 19(x) | | | | 20 | |
--------------------- ---------------------- --------------------- -----------------------
| | | | | | | 24 | | 22(x) | | | (x)23 | |
=====(x)==(x)= =========(x)= ============ =============
| | 26 | 27 | | | | | | 25 | | | | | 26 (x) |
---------------------- --(x)--------------- ---(x)---------------- --(x)-----------------
| | | | | 28 | (x)30 | | | | | | 28 | 29 (x) |
----------------(x)-- ---------------------- ---------------------- ----------------------
| | | 33 | | 31(x) | | | (x)32 | | | | | |
--------------------- ----------------(x)-- --------------------- ----------------------
| | | | | 34(x) | 36 | | | | | | 34(x)35 | |
============ ============ ============ =============
M5 M6 M7 M8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | 2 | | | | | 3 | | | | | | 1 (x) | |
---------(x)--------- ----------------(x)-- --(x)-----------(x)- -----------------------
| | | | | | | | | 4 | | 6 | | 4 (x) | |
--------------------- --------------------- --------------------- -----------------------
| | 8(x) | | | | 9 | | | | | | 7 (x) | |
--(x)---------------- ----------------(x)-- ---------------------- -----------------------
| 10 | | | | (x) 11 | | | | (x)12 | | 10(x) | |
============ ============ ============ =============
| | | 15 | | | | | | | (x)15 | | 13(x) | |
--(x)----------(x)-- ----------(x)-------- --------------------- -----------------------
| 16 | | | | | 17 | | | | (x)18 | | 16(x) | |
--------------------- --(x)--------------- --------------------- -----------------------
| | (x)21 | | 19 | | | | | (x)21 | | 19(x) | |
--(x)---------------- ----------------(x)-- --------------------- -----------------------
| 22 | 23 | | | | | 24 | | | (x)24 | | 22(x) | |
=====(x)===== =(x)========= ============ =============
| | | | | 25 | | | | | (x)27 | | 25(x) | 27 |
--------------------- ----------------(x)-- --------------------- -----------------(x)--
| | 29(x) | | | | 30 | | | (x)30 | | | | |
-(x)---------------- - ---------(x)-------- --------------------- -----------------------
| 31 | | | | | 32 | | | | (x)33 | | | | 33 |
--------------------- ----------------(x)-- --------------------- ----------------(x)--
| | 35(x) | | | | 36 | | | (x)36 | | | | |
============ ============ ============ =============
M9 M10 M11 M12
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | 2 (x) | | | (x) 3 | | | | 3 | | 1 | | |
--------------------- ---------------------- ----------------(x)-- --(x)-----------------
| (x) 5 | | | | (x) 6 | | | 5 | | | | | |
--------------------- --------------------- ---------(x)--------- ----------------------
| | 8 (x) | | | (x) 9 | | | | 9 | | 7 | | |
--------------------- ---------------------- ----------------(x)-- --(x)---(x)----------
| | 11(x) | | 10 | (x)12 | | | | | | | 11 | |
============ =(x)========= ============ =========(x)==
| (x)14 | | | | | | | | 14 | | | 13(x) | 15 |
-------------------- ----------------(x)-- ---------(x)--------- ----------------------
| (x)17 | | | 16 | | 18 | | | | | | | 17 | |
--------------------- --(x)---------------- --------------------- ---------(x)----------
| | 20 | | | | | | | | 20(x) | | 19 | | 21 |
---------(x)--------- --------------------- --------------------- --(x)-----------(x)--
| | | | | 22 | 23 (x) | | | (x)24 | | | | |
============ =(x)========= ============ =============
| (x)26 | | | | | | | | 26 | | | 25 | | |
--------------------- ----------(x)-------- --(x)----(x)----(x)-- --(x)-----------------
| 28(x) | | | | 29 | | | 28 | | 30 | | | | |
--------------------- ---------------------- --------------------- -----------------------
| 31(x) | | | | 32 | | | | 32 (x) | | | | |
--------------------- --------(x)--------- --(x)---------------- -----------------------
| 34(x) | | | | 35 | | | 34 | (x)36 | | | | |
============ ============ ============ =============
M13
ZERO BET TABLE (11 no. – MEDIUM)
0 COST PROFIT
============ 1. x=1 11 36-11=25
| | 2 | | 2. x=1 11 36-22=14
---------(x)--------- (22)
| 4 | | 6 | 3. x=1 11 36-33=3
--(x)----------(x)-- (33)
| | 8 | | 4. x=2 22 72-55=17
---------(x)--------- (55)
| | | 12 | 5. x=3 33 108-88=20
=========(x)= (88)
| | | | 6. x=4 44 144-132=12
--------------------- (132)
| | | 18 | 7. x=6 66 216-198=18
----------------(x)-- (198)
| | | | 8. x=8 88 288-286=2
---------------------- (286)
| (x)23 | | 9. x=12 132 432-418=14
=========(x)= (418)
| | | 27 | 10. x=17 187 612-605=7
--------------------- (605)
| (x)29 | | 11. x=25 275 900-880=20
--------------------- (880)
| 31 | | 33 | 12. x=36 396 1296-1276=20
--(x)---(x)----(x)-- (1276)
| | 35 | | (ATTENTION : CASINO LIMIT X=100)
============
HOW TO PLAY ?
- sunt posibile 2 moduri de joc :
1) – mod 1 : - intreg
- waiting for trend (3-4 no.)
- fiecare matrice lucreaza independent – conform BET TABLE (11 no.);
- se activeaza numai matricile care NU contin cel putin ultimele 3 numere (3 non)
2) – mod 2 : - jumatate – conform pozitiilor notate cu (x)-INSIDE;
- matricile necastigatoare se dubleaza (tripleaza);
- se adauga ultimul numar extras (LAST) si se calculeaza numarul ZERO;
- daca SUMA PROFIT>0, toate matricile active se aduc pe ‘’x1’’
- la profit de 30-40 x (bet=1), recomandam sa parasiti sesiunea
- E=Engulf (apartine, cuprins in…) ; LAST=ultimul numar extras
{-2 game modes are possible:
1) – mode 1: - whole
- waiting for trend (3-4 no.)
- each matrix works independently – according to BET TABLE (11 No.);
- only the matrices that does not contain at least the LAST 3 numbers (3 non) is activated
2) – mode 2: - half – according to the positions denoted with (x)-INSIDE;
- the loses matrices doubles (triple);
- add the last number extracted (LAST) and calculate the number ZERO;
- if the PROFIT amount > 0, all active matrices is brought to ‘’x1’’ – NEW session;
- at profit of 30-40 x (bet = 1), we recommend leaving the session
-E = Engulf (belongs, contained in...); LAST = last number extracted}
{-2 modes de jeu sont possibles :
1) mode 1: - entier
- en attente de tendance (3-4 no.)
- chaque matrice fonctionne indépendamment - selon BET TABLE (11 No.);
- seulement les matrices qui ne contiennent pas au moins les 3 derniers nombres (3 non) sont activées
2) mode 2: - moitié - selon les positions indiquées avec (x)-INSIDE;
- les matrices non-âgées doublent (triple);
- ajouter le dernier numéro extrait (LAST) et calculer le nombre ZERO;
- si le montant de profit> 0, toutes les matrices actives sont portées à ‘’x1’’-NEW ;
- au profit de 30-40 x (pari 1), nous vous recommandons de quitter la session
-E - Engulf (appartient, contenu dans...); LAST=dernier numéro extrait}
EX.(E.G.)
- – mod 1 |->NEW |->NEW
SPIN 1. 2. 3. 4. | 5. 6. | 7.
M1 - (-) (-) - - - x1
M2 - - - (x1) - - -
M3 (-) - - - x1 (x1) -
M4 - - - x1 (x1) - -
M5 - - - x1 (x1) - -
M6 - - (-) (-) - - -
M7 (-) (-) - (-) - (-) -
M8 - (-) - - - x1 x1
M9 - - (-) - - - x1
M10 (-) - - - (x1) (-) -
M11 - - - (x1) - - -
M12 - - (-) - - - x1
M13 (-) (-) - - (-) (-) -
- LAST=12 E M3,M7,M10,M13 ; 2. LAST=27 E M1,M7,M8,M13
- LAST=17 E M1,M6,M9,M12
- M2,M4,M5,M11=(3 non)
Play : 1xM2+1xM4+1xM5+1xM11+LAST(17)=2+ZERO=2
LAST=24 E M2,M6,M7,M11 – profit=22 (NEW)
- Play : 1xM3+1xM4+1xM5+1xM10+LAST(24)=2+ZERO=2
LAST=29 E M4,M5,M10,M13 – profit=80 (NEW)
- M8=(3 non) ; Play : 1xM3+1xM8+LAST(29)=1+ZERO=1
LAST=12 E M3,M7,M10,M13 – profit=92
Comentarii
Trimiteți un comentariu