ROULETTE 1_2
ROULETTE 1_2 (INSIDE)
*************
(DRAGU’s method)
(Continuity R.1_1)
Redefinim si reordonam tabla de joc, sub forma de sub-matrici :
{ We redefine and reorder the board of the game in the form of sub-matrices:}
{ Nous redéfinissons et réorcons le tableau du jeu sous forme de sous-matrices :}
DOZEN 1
==============
1 | 2 | S1 : {1 – 2 – 4 – 5 – 8 – 9 – 11 – 12}
------(X)--------------
4 | 5 |
------------------------
| 8 | 9
---------(X)----
| 11 | 12
==============
==============
1 | 2 | S4 : {1 – 2 – 4 – 5 – 7 – 8 – 10 – 11}
---(X)---------
4 | 5 |
----------------------
7 | 8 |
---(X)--------
10 | 11 |
=============
=============
| 2 | 3 S7 : {2 – 3 – 5 – 6 – 8 – 9 – 11 – 12}
-------(X)-----
| 5 | 6
---------------------
| 8 | 9
------(X)-----
| 11 | 12
=============
=============
| 2 | 3 S10 : {2 – 3 – 5 - 6 – 7 – 8 – 10 – 11}
------(X)-----
| 5 | 6
-----------------------
7 | 8 |
-----(X)------
10 | 11 |
============
DOZEN 2
============
13 | 14 | S2 : {13 – 14 – 16 – 17 – 19 – 20 – 22 – 23}
-----(X)------
16 | 17 |
---------------
19 | 20 |
-----(X)------
22 | 23 |
============
============
| 14 | 15 S5 : {14 – 15 – 17 – 18 – 20 – 21 – 23 – 24}
------(X)-----
| 17 | 18
---------------------
| 20 | 21
------(X)-----
| 23 | 24
============
===========
13 | 14 | S8 : {13 – 14 – 16 – 17 – 20 – 21 – 23 – 24}
-----(X)-----
16 | 17 |
--------------------
| 20 | 21
------(X)---
| 23 | 24
===========
===========
| 14 | 15 S11 : {14 – 15 – 17 – 18 – 19 – 20 – 22 – 23}
-----(X)----
| 17 | 18
--------------------
19 | 20 |
----(X)-----
22 | 23 |
===========
DOZEN 3
============
25 | 26 | S3 : {25 – 26 – 28 – 29 – 31 – 32 – 34 – 35}
-----(X)-----
28 | 29 |
--------------------
31 | 32 |
-----(X)----
34 | 35 |
===========
===========
25 | 26 | S6 : {25 – 26 – 28 – 29 – 32 – 33 – 35 – 36}
-----(X)-----
28 | 29 |
---------------------
| 32 | 33 |
-----(X)------
| 35 | 36 |
============
============
| 26 | 27 | S9 : {26 – 27 – 29 – 30 – 31 – 32 – 34 – 35}
-----(X)------
| 29 | 30 |
---------------------
31 | 32 |
----(X)-----
34 | 35 |
===========
===========
| 26 | 27 | S12 : {26 – 27 – 29 – 30 – 32 – 33 – 35 – 36}
-----(X)-----
| 29 | 30 |
---------------------
| 32 | 33 |
-----(X)-----
| 35 | 36 |
============
Desfasurare grafica : {graphical progress:} {progrès graphiques:}
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
- o - o - o - - - - - - -
- - - - - - - o - o - o -
- - o - o - o - - - - - -
- - - - - - - - o - o - o
- - - o - o - o - - - - -
- o - - - - - - - o - o -
- - - - o - o - o - - - -
- - o - - - - - - - o - o
- - - - - o - o - o - - -
- o - o - - - - - - - o -
- - - - - - o - o - o - -
- - o - o - - - - - - - o
Matrices :
M1 : S1 + S3 + S5
M2 : S7 + S9 + S11
M3 : S2 + S4 + S6
M4 : S8 + S10 + S12
M5 : S3 + S5 + S7
M6 : S1 + S9 + S11
M7 : S4 + S6 + S8
M8 : S2 + S10 + S12
M9 : S5 + S7 + S9
M10 : S1 + S3 + S11
M11 : S6 + S8 + S10
M12 : S2 + S4 + S12
VAR. I
====
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1(S1+S3+S5) M2(S7+S9+S11) M3(S2+S4+S6) M4(S8+S10+S12)
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 | | | | 2 | 3 | | 1 | 2 | | | | 2 | 3 |
-----(x)----------- -------------(x)----- -----(x)------------- -------------(x)------
| 4 | 5 | | | | 5 | 6 | | 4 | 5 | | | | 5 | 6 |
---------------------- --------------------- ---------------------- ----------------------
| | 8 | 9 | | | 8 | 9 | | 7 | 8 | | | 7 | 8 | |
------------(x)------ -------------(x)----- ------(x)------------ ------(x)--------------
| | 11 | 12 | | | 11 | 12 | | 10 | 11 | | | 10 | 11 | |
============ ============ ============ =============
| | 14 | 15 | | | 14 | 15 | | 13 | 14 | | | 13 | 14 | |
-------------(x)----- -------------(x)----- -----(x)------------ -----(x)--------------
| | 17 | 18 | | | 17 | 18 | | 16 | 17 | | | 16 | 17 | |
---------------------- --------------------- ---------------------- -----------------------
| | 20 | 21 | | 19 | 20 | | | 19 | 20 | | | | 20 | 21 |
-------------(x)------ ------(x)------------ -----(x)------------ -------------(x)-------
| | 23 | 24 | | 22 | 23 | | | 22 | 23 | | | | 23 | 24 |
============ ============ ============ =============
| 25 | 26 | | | | 26 | 27 | | 25 | 26 | | | | 26 | 27 |
------(x)------------ ------------(x)----- -----(x)------------ -------------(x)------
| 28 | 29 | | | | 29 | 30 | | 28 | 29 | | | | 29 | 30 |
--------------------- ---------------------- ---------------------- -----------------------
| 31 | 32 | | | 31 | 32 | | | | 32 | 33 | | | 32 | 33 |
------(x)------------ -----(x)------------ -------------(x)----- --------------(x)------
| 34 | 35 | | | 34 | 35 | | | | 35 | 36 | | | 35 | 36 |
============ ============ ============ =============
M5(S3+S5+S7) M6(S1+S9+S11) M7(S4+S6+S8) M8(S2+S10+S12)
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | 2 | 3 | | 1 | 2 | | | 1 | 2 | | | | 2 | 3 |
-------------(x)---- ------(x)------------ -----(x)------------- -------------(x)------
| | 5 | 6 | | 4 | 5 | | | 4 | 5 | | | | 5 | 6 |
--------------------- --------------------- --------------------- -----------------------
| | 8 | 9 | | | 8 | 9 | | 7 | 8 | | | 7 | 8 | |
------------(x)------ ------------(x)----- -----(x)------------- ------(x)--------------
| | 11 | 12 | | | 11 | 12 | | 10 | 11 | | | 10 | 11 | |
============ ============ ============ =============
| | 14 | 15 | | | 14 | 15 | | 13 | 14 | | | 13 | 14 | |
-------------(x)----- ------------(x)----- ------(x)------------ ------(x)-------------
| | 17 | 18 | | | 17 | 18 | | 16 | 17 | | | 16 | 17 | |
---------------------- --------------------- ---------------------- -----------------------
| | 20 | 21 | | 19 | 20 | | | | 20 | 21 | | 19 | 20 | |
-------------(x)----- ------(x)------------ -------------(x)---- ------(x)-------------
| | 23 | 24 | | 22 | 23 | | | | 23 | 24 | | 22 | 23 | |
============ ============ ============ =============
| 25 | 26 | | | | 26 | 27 | | 25 | 26 | | | | 26 | 27 |
------(x)------------ -------------(x)----- ------(x)------------ -------------(x)------
| 28 | 29 | | | | 29 | 30 | | 28 | 29 | | | | 29 | 30 |
--------------------- - --------------------- ---------------------- -----------------------
| 31 | 32 | | | 31 | 32 | | | | 32 | 33 | | | 32 | 33 |
------(x)----------- -----(x)------------- -------------(x)----- -------------(x)-------
| 34 | 35 | | | 34 | 35 | | | | 35 | 36 | | | 35 | 36 |
============ ============ ============ =============
M9(S5+S7+S9) M10(S1+S3+S11) M11(S6+S8+S10) M12(S2+S4+S12)
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | 2 | 3 | | 1 | 2 | | | | 2 | 3 | | 1 | 2 | |
------------(x)------ -----(x)------------ -------------(x)----- ------(x)--------------
| | 5 | 6 | | 4 | 5 | | | | 5 | 6 | | 4 | 5 | |
---------------------- --------------------- ---------------------- -----------------------
| | 8 | 9 | | | 8 | 9 | | 7 | 8 | | | 7 | 8 | |
-------------(x)----- -------------(x)----- ------(x)------------ -----(x)--------------
| | 11 | 12 | | | 11 | 12 | | 10 | 11 | | | 10 | 11 | |
============ ============ ============ =============
| | 14 | 15 | | | 14 | 15 | | 13 | 14 | | | 13 | 14 | |
-------------(x)----- -------------(x)------ ------(x)------------ ------(x)--------------
| | 17 | 18 | | | 17 | 18 | | 16 | 17 | | | 16 | 17 | |
--------------------- ----------------------- -------------------- -----------------------
| | 20 | 21 | | 19 | 20 | | | | 20 | 21 | | 19 | 20 | |
-------------(x)----- -----(x)------------- -------------(x)----- -----(x)--------------
| | 23 | 24 | | 22 | 23 | | | | 23 | 24 | | 22 | 23 | |
============ ============ ============ =============
| | 26 | 27 | | 25 | 26 | | | 25 | 26 | | | | 26 | 27 |
-------------(x)----- -----(x)------------ -----(x)------------ -------------(x)------
| | 29 | 30 | | 28 | 29 | | | 28 | 29 | | | | 29 | 30 |
--------------------- ---------------------- ---------------------- -----------------------
| 31 | 32 | | | 31 | 32 | | | | 32 | 33 | | | 32 | 33 |
------(x)------------ ------(x)------------ -------------(x)----- -------------(x)------
| 34 | 35 | | | 34 | 35 | | | | 35 | 36 | | | 35 | 36 |
============ ============ ============ =============
HOW TO PLAY ?
- se joaca pe serii de numere. Se incepe cu (1xM1) si se continua – secvential – cu urmatoarele matrici. Matricile care pierd, se tripleaza (x3,x9,x27,x81,etc.). Modul de joc este cicling !
- la un bet>12, se va calcula numarul ZERO ;
- la SUMA PROFIT>0, toate matricile active (necastigatoare !), se reseteaza pe ‘’x1’’. Se incepe o noua sesiune de joc (NEW session) ;
- E=Engulf (apartine, cuprins in…) ; LAST=ultimul numar extras
{- is played on series of numbers. Start with (1xM1) and proceed – sequentially – with the following matrices. The matrices that lose, triples (X3, X9, x27, x81, etc.). The gameplay is cicling!
- at a bet > 12, the number ZERO will be calculated;
- at the PROFIT amount > 0, all the active matrices (loses!), is reset on ' ' x1 ' '. Start a new session of the game (NEW session);
-E = Engulf (belongs, contained in...); LAST = last number extracted}
{- est joué sur une série de nombres. Commencez par (1xM1) et procédez - séquentiellement - avec les matrices suivantes. Les matrices qui perdent, triplent (x3, x9, x27, x81, etc.). Le gameplay est cicling!
- lors d'un pari> 12, le nombre ZERO sera calculé;
- au montant de profit> 0, toutes les matrices actives (qui perds!), sont réinitialisées sur ' ' x1 ' '. Démarrer une nouvelle session du jeu (NEW session);
-E - Engulf (appartient, contenu dans...); LAST=dernier numéro extrait}
EX.1 (E.G.)
|->NEW |->NEW
SPIN 1. 2. 3. 4. | 5. 6. 7. 8. 9. | 10. 11.
M1 (x1) - -
M2 - x1 (x3) -
M3 - x1 (x3)
-------------------------------------------------------------------------------------
M4 - (x1) -
M5 - x1 (x3) -
M6 - x1 (x3)
-------------------------------------------------------------------------------------
M7 - x1 x3 (x9)
M8 - x1 (x3)
M9 - (x1) -
-------------------------------------------------------------------------------------
M10 - x1
M11 - -
M12
- Play : 1xM1 ; LAST=15 E M1 – profit=3
- Play : 1xM2 ; LAST=4
- Play : 3xM2+1xM3+ZERO=1 ; LAST=6 E M2
- Play : 3xM3+1xM4+ZERO=1 ; LAST=14 E M3,M4 – profit=10
(all active matrices on pos.’’x1’’ – NEW session)
- Play : 1xM5 ; LAST=1
- Play : 3xM5+1xM6+ZERO=1 ; LAST=28 E M5
- Play : 3xM6+1xM7+ZERO=1 ; LAST=9 E M6
- Play : 3xM7+1xM8+ZERO=1 ; LAST=34
- Play : 9xM7+3xM8+1xM9+ZERO=3 ; LAST=20 E M7,M8,M9 –profit=19
EX.2(E.G.)
|->NEW |->NEW |->NEW |->NEW
SPIN 1. 2. 3. 4. | 5. 6. | 7. | 8. | 9.
M1 (x1) -
M2 - x1 (x3)
M3 - x1 (x3)
-------------------------------------------------------------------------------------
M4 - (x1)
M5 - x1 (x3)
M6 - (x1)
--------------------------------------------------------------------------------------
M7 - (x1)
M8 - (x1)
M9 - (x1)
---------------------------------------------------------------------------------------
M10 -
M11
M12
- Play : 1xM1 ; LAST=12 E M1 – profit=3
- Play : 1xM2 ; LAST=24
- Play : 3xM2+1xM3+ZERO=1 ; LAST=30 E M2
- Play : 3xM3+1xM4+ZERO=1 ; LAST=35 E M3,M4 – profit=10 (NEW)
- Play : 1xM5 ; LAST=13
- Play : 3xM5+1xM6+ZERO=1 ; LAST=17 E M5,M6 – profit=15 (NEW)
- Play : 1xM7 ; LAST=36 E M7 - profit=18 (NEW)
- Play : 1xM8 ; LAST=19 E M8 - profit=21 (NEW)
- Play : 1xM9 ; LAST=6 E M9 - profit=24
VAR. II
=====
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1(S1+S3+S5) M2(S7+S9+S11) M3(S2+S4+S6) M4(S8+S10+S12)
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 | | | | 2 | 3 | | 1 | 2 | | | | 2 | 3 |
--(x)---(x)--------- ---------(x)---(x)-- --(x)---(x)--------- ---------(x)----(x)--
| 4 | 5 | | | | 5 | 6 | | 4 | 5 | | | | 5 | 6 |
--------------------- ---------------------- --------------------- ----------------------
| | 8 | 9 | | | 8 | 9 | | 7 | 8 | | | 7 | 8 | |
---------(x)---(x)-- ---------(x)---(x)-- --(x)----(x)-------- --(x)----(x)---------
| | 11 | 12 | | | 11 | 12 | | 10 | 11 | | | 10 | 11 | |
============ ============ ============ =============
| | 14 | 15 | | | 14 | 15 | | 13 | 14 | | | 13 | 14 | |
--------(x)----(x)-- ---------(x)---(x)-- --(x)----(x)--------- --(x)---(x)----------
| | 17 | 18 | | | 17 | 18 | | 16 | 17 | | | 16 | 17 | |
--------------------- --------------------- ---------------------- -----------------------
| | 20 | 21 | | 19 | 20 | | | 19 | 20 | | | | 20 | 21 |
---------(x)---(x)-- --(x)---(x)--------- --(x)---(x)--------- ---------(x)----(x)--
| | 23 | 24 | | 22 | 23 | | | 22 | 23 | | | | 23 | 24 |
============ ============ ============ =============
| 25 | 26 | | | | 26 | 27 | | 25 | 26 | | | | 26 | 27 |
--(x)---(x)--------- ---------(x)---(x)-- --(x)----(x)--------- ---------(x)----(x)--
| 28 | 29 | | | | 29 | 30 | | 28 | 29 | | | | 29 | 30 |
--------------------- ---------------------- ---------------------- -----------------------
| 31 | 32 | | | 31 | 32 | | | | 32 | 33 | | | 32 | 33 |
--(x)---(x)--------- --(x)---(x)--------- ---------(x)---(x)-- ---------(x)-----(x)--
| 34 | 35 | | | 34 | 35 | | | | 35 | 36 | | | 35 | 36 |
============ ============ ============ =============
M5(S3+S5+S7) M6(S1+S9+S11) M7(S4+S6+S8) M8(S2+S10+S12)
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | 2 | 3 | | 1 | 2 | | | 1 | 2 | | | | 2 | 3 |
---------(x)---(x)-- --(x)---(x)--------- --(x)----(x)-------- ---------(x)-----(x)--
| | 5 | 6 | | 4 | 5 | | | 4 | 5 | | | | 5 | 6 |
--------------------- --------------------- ---------------------- -----------------------
| | 8 | 9 | | | 8 | 9 | | 7 | 8 | | | 7 | 8 | |
---------(x)---(x)-- ---------(x)---(x)-- --(x)-- -(x)--------- --(x)----(x)----------
| | 11 | 12 | | | 11 | 12 | | 10 | 11 | | | 10 | 11 | |
============ ============ ============ =============
| | 14 | 15 | | | 14 | 15 | | 13 | 14 | | | 13 | 14 | |
---------(x)---(x)-- ---------(x)---(x)-- --(x)---(x)--------- --(x)----(x)----------
| | 17 | 18 | | | 17 | 18 | | 16 | 17 | | | 16 | 17 | |
--------------------- ---------------------- --------------------- -----------------------
| | 20 | 21 | | 19 | 20 | | | | 20 | 21 | | 19 | 20 | |
---------(x)---(x)-- --(x)---(x)--------- ---------(x)---(x)-- --(x)----(x)----------
| | 23 | 24 | | 22 | 23 | | | | 23 | 24 | | 22 | 23 | |
============ ============ ============ =============
| 25 | 26 | | | | 26 | 27 | | 25 | 26 | | | | 26 | 27 |
--(x)----(x)-------- ---------(x)---(x)-- --(x)---(x)--------- ---------(x)-----(x)--
| 28 | 29 | | | | 29 | 30 | | 28 | 29 | | | | 29 | 30 |
--------------------- ---------------------- --------------------- -----------------------
| 31 | 32 | | | 31 | 32 | | | | 32 | 33 | | | 32 | 33 |
--(x)---(x)--------- --(x)---(x)--------- ---------(x)----(x)-- ----------(x)----(x)--
| 34 | 35 | | | 34 | 35 | | | | 35 | 36 | | | 35 | 36 |
============ ============ ============ =============
M9(S5+S7+S9) M10(S1+S3+S11) M11(S6+S8+S10) M12(S2+S4+S12)
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | 2 | 3 | | 1 | 2 | | | | 2 | 3 | | 1 | 2 | |
--------(x)----(x)-- --(x)----(x)--------- - --------(x)---(x)-- --(x)----(x)----------
| | 5 | 6 | | 4 | 5 | | | | 5 | 6 | | 4 | 5 | |
--------------------- ---------------------- --------------------- -----------------------
| | 8 | 9 | | | 8 | 9 | | 7 | 8 | | | 7 | 8 | |
--------(x)----(x)-- ---------(x)---(x)-- --(x)----(x)-------- --(x)---(x)----------
| | 11 | 12 | | | 11 | 12 | | 10 | 11 | | | 10 | 11 | |
============ ============ ============ =============
| | 14 | 15 | | | 14 | 15 | | 13 | 14 | | | 13 | 14 | |
---------(x)---(x)-- ---------(x)---(x)-- --(x)----(x)--------- --(x)----(x)----------
| | 17 | 18 | | | 17 | 18 | | 16 | 17 | | | 16 | 17 | |
--------------------- --------------------- ---------------------- -----------------------
| | 20 | 21 | | 19 | 20 | | | | 20 | 21 | | 19 | 20 | |
---------(x)---(x)-- --(x)---(x)--------- ----------(x)---(x)-- --(x)---(x)----------
| | 23 | 24 | | 22 | 23 | | | | 23 | 24 | | 22 | 23 | |
============ ============ ============ =============
| | 26 | 27 | | 25 | 26 | | | 25 | 26 | | | | 26 | 27 |
---------(x)---(x)-- --(x)---(x)--------- --(x)---(x)--------- ---------(x)----(x)--
| | 29 | 30 | | 28 | 29 | | | 28 | 29 | | | | 29 | 30 |
---------------------- --------------------- ---------------------- ----------------------
| 31 | 32 | | | 31 | 32 | | | | 32 | 33 | | | 32 | 33 |
--(x)---(x)--------- --(x)---(x)--------- --------(x)----(x)-- ---------(x)----(x)--
| 34 | 35 | | | 34 | 35 | | | | 35 | 36 | | | 35 | 36 |
============ ============ ============ =============
EX.1 (E.G.)
SPIN 1. 2. 3. 4. 5. 6. 7. 8.
M1 (x1)
M2 - (x1)
M3 - x1 (x3)
---------------------------------------------------------
M4 - (x1)
M5 - (x1)
M6 - (x1)
---------------------------------------------------------
M7 - (x1)
M8 - x1
M9 -
- Play : 1xM1+ZERO=1 ; LAST=31 E M1 - profit=5
- Play : 1xM2+ZERO=1 ; LAST=5 E M2 - profit=10
- Play : 1xM3+ZERO=1 ; LAST=9
- Play : 3xM3+1xM4+ZERO=2 ; LAST=2 E M3,M4 – profit=19
- Play : 1xM5+ZERO=1 ; LAST=24 E M5 - profit=24
- Play : 1xM6+ZERO=1 ; LAST=22 E M6 - profit=29
- Play : 1xM7+ZERO=1 ; LAST=1 E M7 - profit=34
EX.2 (E.G.)
SPIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
M1 (x1) (x1)
M2 - x1 x3 (x9) - (x1)
M3 - (x1) - - x1
------------------------------------------------------------------------------------
M4 x1 (x3)
M5 - (x1)
M6 - (x1)
------------------------------------------------------------------------------------
M7 - x1 (x3)
M8 - x1 x3 x9 (x27)
M9 - (x1) -
- Play : 1xM1+ZERO=1 ; LAST=5 E M1
- Play : 1xM2+ZERO=1 ; LAST=24
- Play : 3xM2+1xM3+ZERO=2 ; LAST=16 E M3
- Play : 9xM2+1xM4+ZERO=4 ; LAST=18 E M2
- Play : 3xM4+1xM5+ZERO=2 ; LAST=21 E M4,M5 – profit=19
- Play : 1xM6+ZERO=1 ; LAST=22 E M6 – profit=24
- Play : 1xM7+ZERO=1 ; LAST=19
- Play : 3xM7+1xM8+ZERO=2 ; LAST=1 E M7
- Play : 3xM8+1xM9+ZERO=2 ; LAST=12 E M9
- Play : 9xM8+1xM1+ZERO=4 ; LAST=25 E M1
- Play : 27xM8+1xM2+ZERO=10 ; LAST=19 E M2,M8 – profit=35
Comentarii
Trimiteți un comentariu