ROULETTE 3_1
ROULETTE 3_1 – OUTSIDE
*************
(DRAGU’s method)
Daca se priveste schema ruletei, in sensul “acelor de ceasornic” (clock) – cu punct de referinta ZERO (0) – se observa un sir de 36 numere :
{ If the roulette scheme is concerned, in the clockwise direction (clock) – with ZERO reference point (0) – a string of 36 numbers is observed:}
{ Si le schéma de roulette est concerné, dans le sens des aiguilles d'une montre (clock) - avec le point de référence ZERO (0) - une chaîne de 36 numéros est observée:}
32 – 15 – 19 - 4 – 21 - 2 – 25 – 17 – 34 - ….
O dezvoltare clasica pe serie numerica – se cunoaste ! – este impartirea in 4 sectoare de cate 9 numere (step 4) :
{ A classic series development – it is known! – it is the division in 4 sectors of 9 numbers (step 4):}
{ Un développement de série classique - il est connu! - c'est la division en 4 secteurs de 9 numéros (step 4) :}
- 32 – 21 – 34 – 36 – 23 – 16 – 14 – 18 – 12 (12 – 14 – 16 – 18 – 21 – 23 – 32 – 34 – 36)
- 15 - 2 - 6 - 11 – 10 – 33 – 31 – 29 – 35 ( 2 - 6 – 10 – 11 – 15 – 29 – 31 – 33 – 35)
- 19 – 25 – 27 – 30 - 5 - 1 - 9 - 7 - 3 ( 1 - 3 - 5 - 7 - 9 - 19 – 25 – 27 – 30)
- 4 – 17 – 13 - 8 – 24 – 20 – 22 – 28 – 26 ( 4 - 8 - 13 – 17 – 20 – 22 – 24 – 26 – 28)
Reprezentarea grafica {graphical representation } {représentation graphique }
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | | 3 | | | 2 | | | | | | | | | |
-------------------(x) -------------------(x) --------------------- -----------------------
| | 5 | | | | | 6 | | 4 | | | | | | |
--------------------- --------------------- -------------------(x) ----------------------
| 7 | | 9 | | | | | | | 8 | | | | | |
-------------------(x) --------------------- ---------------------- -----------------------
| | | | | 10 | 11 | | | | | | | | | 12 |
============ ===========(x) ============ ============(x)
| | | | | | | 15 | | 13 | | | | | 14 | |
--------------------- ---------------------- --------------------(x) -----------------------
| | | | | | | | | | 17 | | | 16 | | 18 |
-------------------(x) ---------------------- ---------------------- ---------------------(x)
| 19 | | | | | | | | | 20 | | | | | 21 |
---------------------- ---------------------- --------------------(x) -----------------------
| | | | | | | | | 22 | | 24 | | | 23 | |
============ ============ ============ ============(x)
| 25 | | 27 | | | | | | | 26 | | | | | |
--------------------(x) --------------------(x) ---------------------(x) -----------------------
| | | 30 | | | 29 | | | 28 | | | | | | |
---------------------- --------------------- ---------------------- -----------------------
| | | | | 31 | | 33 | | | | | | | 32 | |
--------------------- --------------------(x) ---------------------- ---------------------(x)
| | | | | | 35 | | | | | | | 34 | | 36 |
============ ============ ============= =============
Prin suprapunerea celor 4 grafice, se pot construi 10 sub-matrici (secvential cu step 3, rezulta urmatoarea ordine : S1-S4-S7-S10-S3-S6-S9-S2-S5-S8) :
{ By overlapping the 4 graphs, 10 sub-matrices can be built (sequence with step 3, the following order follows: S1-S4-S7-S10-S3-S6-S9-S2-S5-S8):}
{ En supermayant les 4 graphiques, 10 sous-matrices peuvent être construites (séquence avec step 3, l'ordre suivant suit: S1-S4-S7-S10-S3-S6-S9-S2-S5-S8):}
VAR. I
====
ZERO
0
============
| 1 | 2 | 3 |
--------------------(x) S1 S1 : 1-2-3-4-5-6
| 4 | 5 | 6 |
--------------------(x) S4 S4 : 4-5-6-7-8-9
| 7 | 8 | 9 |
--------------------(x) S7 S7 : 7-8-9-10-11-12
| 10 | 11 | 12 |
===========(x) S10 S10 : 10-11-12-13-14-15
| 13 | 14 | 15 |
--------------------(x) S3 S3 : 13-14-15-16-17-18
| 16 | 17 | 18 |
--------------------(x) S6 S6 : 16-17-18-19-20-21
| 19 | 20 | 21 |
--------------------(x) S9 S9 : 19-20-21-22-23-24
| 22 | 23 | 24 |
===========(x) S2 S2 : 22-23-24-25-26-27
| 25 | 26 | 27 |
--------------------(x) S5 S5 : 25-26-27-28-29-30
| 28 | 29 | 30 |
---------------------
| 31 | 32 | 33 |
--------------------(x) S8 S8 : 31-32-33-34-35-36
| 34 | 35 | 36 |
============
Dezvoltare grafica : {graphics development:} {développement graphique:}
(10 sub-matrices)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
- o o o - - - - - - -
- - o o o - - - - - -
- - - o o o - - - - -
4 - - - o o o - - - -
- - - - - o o o - - -
- - - - - - o o o - -
- - - - - - - o o o -
- - - - - - - - o o o
- o - - - - - - - o o
- o o - - - - - - - o
Matrices :
M1 : S1+S2+S3
M2 : S2+S3+S4
M3 : S3+S4+S5
M4 : S4+S5+S6
M5 : S5+S6+S7
M6 : S6+S7+S8
M7 : S7+S8+S9
M8 : S8+S9+S10
M9 : S9+S10+S1
M10 : S10+S1+S2
HOW TO PLAY ?
- metoda de joc : ‘’martingale” (matrici opuse);
- fiecare matrice lucreaza independent ;
- matricile care pierd, se dubleaza (tripleaza);
- la SUMA PROFIT>0, toate matricile active se reseteaza pe pozitia ‘’x1’’ si se incepe o noua sesiune (NEW).
E = Engulf (apartine, cuprins in…)
{-Method of play: ' ' martingale ' (opposite matrices);
-each matrix works independently;
-the matrices that loses, doubles (triple);
-At the PROFIT amount > 0, all active matrices is reset to the position ' ' x1 ' ' and a new session (NEW) is started.
E = Engulf (belongs, contained in...)}
{-Méthode de jeu: ' ' martingale ' (en face des matrices);
-chaque matrice fonctionne indépendamment;
-les matrices qui perdent, doublent (triple);
-au montant profit> 0, toutes les matrices actives sont réinitialisées à la position ' ' x1 ' ' ' et une nouvelle session (NEW) est commencée.
E - Engulf (appartient, contenu dans...)}
- LAST = last no.
EX. (E.G.) |->NEW
SPIN 1. 2. 3. 4. 5. | 6. 7. 8. 9. 10.
M1 - (x1) - x1 (x1) - x1 (x2) (-)
M2 - (x1) - x1 (x1) - x1 x2 (x4)
M3 - (x1) (-) - (x1) - x1 x2 (x4)
M4 - x1 (x1) - (x1) - x1 x2 (x4)
M5 - x1 (x1) - (x1) - (x1) - x1
-------------------------------------------------------------------------------------
M6 (-) - x1 (x2) (-) (-) (-) - x1
M7 (-) - x1 (x2) - (x1) (-) - x1
M8 (-) (-) - (x1) - (x1) (-) - x1
M9 - (x1) - x1 x1 x1 (x2) (-) (-)
M10 - (x1) | - x1 | x1 x1 (x2) (-) (-)
|->NEW |->NEW
- LAST=36 E S8 (M6,M7,M8)
- Play : 1xM1+1xM2+1xM3+1xM4+1xM5+1xM9+1xM10+ZERO=1
LAST=14 E S3,S10 (M1,M2,M3,M8,M9,M10) – profit=8 (all active matrices on ’x1’NEW)
- Play : 1xM4+1xM5+1xM6+1xM7+ZERO=1 ; LAST=28 E S5 (M3,M4,M5)
- Play : 1xM1+1xM2+2xM6+2xM7+1xM8+1xM9+1xM10+ZERO=1
LAST=36 E S8 (M6,M7,M8) – profit=9 (NEW)
- Play : 1xM1+1xM2+1xM3+1xM4+1xM5+1xM9+1xM10+ZERO=1
LAST=18 E S3,S6 (M1,M2,M3,M4,M5,M6) – profit=17 (NEW)
- Play : 1xM7+1xM8+1xM9+1xM10+ZERO=1 ; LAST=35 E S8 (M6,M7,M8)
- Play : 1xM1+1xM2+1xM3+1xM4+1xM5+2xM9+2xM10+ZERO=1
LAST=10 E S7,S10 (M5,M6,M7,M8,M9,M10)
- Play : 2xM1+2xM2+2xM3+2xM4+ZERO=1 ; LAST=3 E S1 (M1,M9,M10)
- Play : 4xM2+4xM3+4xM4+1xM5+1xM6+1xM7+1xM8+ZERO=2
LAST=5 E S1,S4 (M1,M2,M3,M4,M9,M10) – profit=27
VAR. II
=====
ZERO
0
============
| 1 | 2 | 3 |
--------------------(x) S1 S1 : 1-2-3-4-5-6
| 4 | 5 | 6 |
--------------------(x) S2 S2 : 4-5-6-7-8-9
| 7 | 8 | 9 |
--------------------(x) S3 S3 : 7-8-9-10-11-12
| 10 | 11 | 12 |
===========(x) S4 S4 : 10-11-12-13-14-15
| 13 | 14 | 15 |
--------------------(x) S5 S5 : 13-14-15-16-17-18
| 16 | 17 | 18 |
--------------------(x) S6 S6 : 16-17-18-19-20-21
| 19 | 20 | 21 |
--------------------(x) S7 S7 : 19-20-21-22-23-24
| 22 | 23 | 24 |
===========(x) S8 S8 : 22-23-24-25-26-27
| 25 | 26 | 27 |
--------------------(x) S9 S9 : 25-26-27-28-29-30
| 28 | 29 | 30 |
----------------------
| 31 | 32 | 33 |
--------------------(x) S10 S10 : 31-32-33-34-35-36
| 34 | 35 | 36 |
============
Dezvoltare grafica : { graphics development:} { développement graphique:}
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
- o - - o - - o - - -
- - - - o - - o - - o
- - - o - - - o - - o
- - - o - - o - - - o
- - - o - - o - - o -
- - o - - - o - - o -
7 . - o - - o - - - o -
- - o - - o - - o - -
- o - - - o - - o - -
- o - - o - - - o - -
Matrices :
M1 : S1 + S4 + S7
M2 : S4 + S7 + S10
M3 : S3 + S7 + S10
M4 : S3 + S6 + S10
M5 : S3 + S6 + S9
M6 : S2 + S6 + S9
M7 : S2 + S5 + S9
M8 : S2 + S5 + S8
M9 : S1 + S5 + S8
M10 : S1 + S4 + S8
EX.(E.G.)
|->NEW |->NEW |->NEW
SPIN 1. 2. | 3. | 4. | 5.
M1 (-) (-) - (x1) -
M2 - (x1) - (x1) -
M3 - (x1) (-) - x1
M4 - (x1) (-) - x1
M5 - (x1) (-) - x1
------------------------------------------------------
M6 (-) - (x1) - x1
M7 (-) - (x1) (-) -
M8 (-) - (x1) (-) -
M9 (-) - x1 (x1) -
M10 (-) (-) - (x1) -
- LAST=5 E S1(M1,M9,M10) ; S2(M6,M7,M8)
- Play : 1xM2+1xM3+1xM4+1xM5+ZERO=1
LAST=11 E S3(M3,M4,M5) ; S4(M1,M2,M10) – profit=11
(all active matrices on pos.’’x1’’ – NEW session)
- Play : 1xM6+1xM7+1xM8+1xM9+ZERO=1
LAST=7 E S2(M6,M7,M8) ; S3(M3,M4,M5) – profit=16 (NEW)
- Play : 1xM1+1xM2+1xM9+1xM10+ZERO=1
LAST=13 E S4(M1,M2,M10) ; S5(M7,M8,M9) – profit=27 (NEW)
VAR. III
======
Varianta neconventionala, dar spectaculoasa, cu 11 sub-matrici :
{ Non-conventional but spectacular variant with 11 sub-matrices:}
{ Variante non conventionnelle, mais spectaculaire, avec 11 sous-matrices :}
1) – MODE 1
ZERO
0
============
| 1 | 2 | 3 |
--------------------(x) S1 S1 : 1-2-3-4-5-6
| 4 | 5 | 6 |
--------------------(x) S2 S2 : 4-5-6-7-8-9
| 7 | 8 | 9 |
--------------------(x) S3 S3 : 7-8-9-10-11-12
| 10 | 11 | 12 |
===========(x) S4 S4 : 10-11-12-13-14-15
| 13 | 14 | 15 |
--------------------(x) S5 S5 : 13-14-15-16-17-18
| 16 | 17 | 18 |
--------------------(x) S6 S6 : 16-17-18-19-20-21
| 19 | 20 | 21 |
--------------------(x) S7 S7 : 19-20-21-22-23-24
| 22 | 23 | 24 |
===========(x) S8 S8 : 22-23-24-25-26-27
| 25 | 26 | 27 |
--------------------(x) S9 S9 : 25-26-27-28-29-30
| 28 | 29 | 30 |
--------------------(x) S10 S10 : 28-29-30-31-32-33
| 31 | 32 | 33 |
--------------------(x) S11 S11 : 31-32-33-34-35-36
| 34 | 35 | 36 |
============
Dezvoltare grafica : { graphics development:} { développement graphique:}
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
- o o o o - - - - - - -
- - - o o o o - - - - -
- - - - - o o o o - - -
- - - - - - - o o o o -
- o - - - - - - - o o o
- o o o - - - - - - - o
- - o o o o - - - - - -
- - - - o o o o - - - -
- - - - - - o o o o - -
- - - - - - - - o o o o
- o o - - - - - - - o o
Matrices :
M1 : S1+S2+S3+S4
M2 : S3+S4+S5+S6
M3 : S5+S6+S7+S8
M4 : S7+S8+S9+S10
M5 : S9+S10+S11+S1
M6 : S11+S1+S2+S3
M7 : S2+S3+S4+S5
M8 : S4+S5+S6+S7
M9 : S6+S7+S8+S9
M10 : S8+S9+S10+S11
M11 : S10+S11+S1+S2
HOW TO PLAY ?
- metoda de joc : ‘’martingale” (matrici opuse);
- fiecare matrice lucreaza independent ;
- matricile care pierd, se dubleaza (tripleaza);
- la SUMA PROFIT>0, toate matricile active se reseteaza pe pozitia ‘’x1’’ si se incepe o noua sesiune (NEW).
E = Engulf (apartine, cuprins in…)
{-Method of play: ' ' martingale ' (opposite matrices);
-each matrix works independently;
-the matrices that loses, doubles (triple);
-At the PROFIT amount > 0, all active matrices is reset to the position ' ' x1 ' ' and a new session (NEW) is started.
E = Engulf (belongs, contained in...)}
{-Méthode de jeu: ' ' martingale ' (en face des matrices);
-chaque matrice fonctionne indépendamment;
-les matrices qui perdent, doublent (triple);
-au montant profit> 0, toutes les matrices actives sont réinitialisées à la position ' ' x1 ' ' ' et une nouvelle session (NEW) est commencée.
E - Engulf (appartient, contenu dans...)}
- LAST=last no.
EX.(E.G.)
|->NEW |->NEW
SPIN 1. 2 | 3. | 4.
M1 - x1 (x1) -
M2 (-) - (x1) -
M3 (-) (-) - x1
M4 - (x1) - (x1)
M5 - (x1) - (x1)
M6 - x1 (x1) (-)
M7 (-) - (x1) -
M8 (-) - (x1) -
M9 - (x1) - x1
M10 - (x1) - (x1)
M11 - x1 x1 (x1)
- LAST=17 E S5,S6 (M2,M3,M7,M8)
- Play : 1xM1+1xM4+1xM5+1xM6+1xM9+1xM10+1xM11+ZERO=1
LAST=27 E S8,S9 (M3,M4,M5,M9,M10) – profit=13 (all active matrices on ‘’x1’’(NEW)
- Play : 1xM1+1xM2+1xM6+1xM7+1xM8+1xM11+ZERO=1
LAST=10 E S3,S4 (M1,M2,M6,M7,M8) – profit=32 (NEW)
- Play : 1xM3+1xM4+1xM5+1xM9+1xM10+1xM11+ZERO=1
LAST=31 E S10,S11 (M4,M5,M6,M10,M11) – profit=49
2) – MODE 2
ZERO
0
============
| 1 | 2 | 3 |
--------------------(x) S1 S1 : 1-2-3-4-5-6
| 4 | 5 | 6 |
--------------------(x) S2 S2 : 4-5-6-7-8-9
| 7 | 8 | 9 |
--------------------(x) S8 S8 : 7-8-9-10-11-12
| 10 | 11 | 12 |
===========(x) S7 S7 : 10-11-12-13-14-15
| 13 | 14 | 15 |
--------------------(x) S4 S4 : 13-14-15-16-17-18
| 16 | 17 | 18 |
--------------------(x) S5 S5 : 16-17-18-19-20-21
| 19 | 20 | 21 |
--------------------(x) S11 S11 : 19-20-21-22-23-24
| 22 | 23 | 24 |
===========(x) S10 S10 : 22-23-24-25-26-27
| 25 | 26 | 27 |
--------------------(x) S9 S9 : 25-26-27-28-29-30
| 28 | 29 | 30 |
--------------------(x) S6 S6 : 28-29-30-31-32-33
| 31 | 32 | 33 |
--------------------(x) S3 S3 : 31-32-33-34-35-36
| 34 | 35 | 36 |
============
Desfasurare grafica : { graphics development:} { développement graphique:}
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
- o - o - o - - - - - -
- - - - - o - o - o - -
- - o - - - - - - o - o
- - o - o - o - - - - -
- - - - - - o - o - o -
- o - o - - - - - - o -
- - - o - o - o - - - -
- - - - - - - o - o - o
- - o - o - - - - - - o
- - - - o - o - o - - -
- o - - - - - - o - o -
Matrices :
M1 : S1 + S3 + S5
M2 : S5 + S7 + S9
M3 : S2 + S9 + S11
M4 : S2 + S4 + S6
M5 : S6 + S8 + S10
M6 : S1 + S3 + S10
M7 : S3 + S5 + S7
M8 : S7 + S9 + S11
M9 : S2 + S4 + S11
M10 : S4 + S6 + S8
M11 : S1 + S8 + S10
EX.(E.G.)
|->NEW |->NEW |->NEW |->NEW
SPIN 1. 2. | 3. | 4. 5. 6. | 7. 8. | 9.
M1 - (x1) - x1 x2 (x4) (-) (-) -
M2 (-) (-) (-) (-) (-) - x1 (x2) -
M3 (-) - (x1) - (x1) - x1 (x2) -
M4 (-) (-) (-) - x1 (x2) - x1 x1
--------------------------------------------------------------------------------
M5 (-) - (x1) (-) (-) (-) - x1 x1
M6 - x1 x1 x1 (x2) (-) (-) - x1
M7 - (x1) - (x1) - (x1) - (x1) -
M8 (-) - (x1) (-) (-) - x1 (x1) -
-------------------------------------------------------------------------------
M9 - (x1) - x1 x2 x4 x1 (x1) -
M10 (-) (-) (-) (-) - (x1) - x1 x1
M11 - x1 x1 (x1) (-) - (x1) - x1
- LAST=28 E S6(M4,M5,M10) ; S9(M2,M3,M8)
- Play : 1xM1+1xM6+1xM7+1xM9+1xM11+ZERO=1
LAST=18 E S4(M4,M9,M10) ; S5(M1,M2,M7) - profit=2
(all active matrices on pos. ‘’x1’’ – NEW session)
- Play : 1xM3+1xM5+1xM6+1xM8+1xM11+ZERO=1
LAST=30 E S6(M4,M5,M10) ; S9(M2,M3,M8) – profit=4 (NEW)
- Play : 1xM1+1xM6+1xM7+1xM9+1xM11+ZERO=1
LAST=7 E S2(M2,M7,M8) ; S8(M5,M10,M11)
- Play : 2xM1+1xM3+1xM4+2xM6+2xM9+ZERO=1
LAST=26 E S9(M2,M3,M8) ; S10(M5,M6,M11)
- Play : 4xM1+2xM4+1xM7+4xM9+1xM10+ZERO=1
LAST=32 E S3(M1,M6,M7) ; S6(M4,M5,M10) – profit=10 (NEW)
7. Play : 1xM2+1xM3+1xM8+1xM9+1xM11+ZERO=1
LAST=1 E S1(M1,M6,M11)
- Play : 2xM2+2xM3+1xM4+1xM5+1xM7+1xM8+1xM9+1xM10+ZERO=1
LAST=21 E S5(M1,M2,M7) ; S11(M3,M8,M9) – profit=14 (NEW)
Comentarii
Trimiteți un comentariu