ROULETTE 35
ROULETTE 35 (INSIDE)
*************
(DRAGU’s method)
O alta impartire a sirului natural de 36 numere, in 20 sub-matrici (neconventionale) :
{ Another natural range of 36 numbers, in 20 sub-matrices (unconventional):}
{ Une autre gamme naturelle de 36 nombres, en 20 sous-matrices (non conventionnelles) :}
ZERO
============
| 1 | 2 | 3 | S1 : 1-2
---------------------- S2 : 3-4
| 4 | 5 | 6 | S3 : 5-6
----------------------
| 7 | 8 | 9 | S4 : 7-8
---------------------- S5 : 9-10
| 10 | 11 | 12 | S6 : 11-12
============
| 13 | 14 | 15 | S7 : 13-14 S8 : 15
---------------------
| 16 | 17 | 18 | S9 : 16-17
--------------------- S10 : 18-19
| 19 | 20 | 21 | S11 : 20
--------------------- S12 : 21-22
| 22 | 23 | 24 | S13 : 23–24
============
| 25 | 26 | 27 | S14 : 25 S15 : 26-27
---------------------
| 28 | 29 | 30 | S16 : 28-29 S17 : 30
---------------------
| 31 | 32 | 33 | S18 : 31-32
--------------------- S19 : 33-34
| 34 | 35 | 36 | S20 : 35–36
============
VAR. I
=====
Desfasurare grafica : {graphical progress } {progrès graphiques}
(step 3, 7)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
- o - - o - - o - - o - - o - - - - - - -
- o o - - - - - o o - - - - - o - - - - -
- - o - - o - - o - - - - - - - o - - o -
- - - o o - - - - - o - - - - - o o - - -
- - - o - - - - - - - o - - o - - o - - o
- - - - - o - - - - - o o - - - - - o o -
- - - - - - o o - - - - - o o - - - - - o
- - - - - - o - - o - - o - - o - - o - -
Matrices :
M1 : S1+S4+S7+S10+S13
1-2 // 7-8 // 13-14 // 18-19 // 23-24 (10 no.)
M2 : S1+S2+S8+S9+S15
1-2 // 3-4 // 15 // 16-17 // 26-27 (9 no.)
M3 : S2+S5+S8+S16+S19
3-4 // 9-10 // 15 // 28-29 // 33-34 (9 no.)
M4 : S3+S4+S10+S16+S17
5-6 // 7-8 // 18-19 // 28-29 // 30 (9 no.)
M5 : S3+S11+S14+S17+S20
5-6 // 20 // 25 // 30 // 35-36 (7 no.)
M6 : S5+S11+S12+S18+S19
9-10 // 20 // 21-22 // 31-32 // 33-34 (9 no.)
M7 : S6+S7+S13+S14+20
11-12 // 13-14 // 23-24 // 25 // 35-36 (9 no.)
M8 : S6+S9+S12+S15+S18
11-12 // 16-17 / / 21-22 // 26-27 // 31-32 (10 no.)
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1 M2 M3 M4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 | | | 1 (x) 2 | 3 | | | (x) 3 | | | | |
--(x)----(x)-------- ----------------(x)-- --------------------- ----------(x)----(x)--
| | | | | 4 | | | | 4 (x) | | | | 5 | 6 |
--------------------- - --(x)--------------- --------------------- --(x)-----------------
| 7 | 8 | | | | | | | | | 9 | | 7 | 8 (x) |
--(x)---(x)--------- ---------------------- ----------------(x)--- ----------------------
| | | | | | | | | 10(x) | | | | | |
============ =========(x)= ============ =============
| 13 | 14 | | | | | 15 | | | | 15 | | | | |
--(x)---(x)--------- ---------------------- ----------------(x)- -----------------------
| | | 18 | | 16 | 17 | | | | | | | | | 18 |
----------------(x)-- --(x)----(x)-------- --------------------- -----------------(x)--
| 19 | | | | | | | | | | | | 19(x) | |
--(x)---------------- --------------------- -------------------- ----------------------
| | 23 | 24 | | | | | | | | | | | | |
=====(x)==(x)= ============ ============ =============
| | | | | | 26 | 27 | | | | | | | | |
---------------------- --------(x)----(x)-- --(x)---------------- ---------(x)----------
| | | | | | | | | 28 | 29 (x) | | 28 | 29 | 30 |
--------------------- ---------------------- --------------------- --(x)-----------(x)--
| | | | | | | | | | | 33 | | | | |
--------------------- --------------------- --(x)-----------(x)-- ----------------------
| | | | | | | | | 34 | | | | | | |
============ ============ ============ =============
M5 M6 M7 M8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | | | | | | | | | | | | | | |
--------------------- ---------------------- ---------------------- -----------------------
| (x) 5 | 6 | | | | | | | | | | | | |
----------------(x)-- --------------------- --------------------- ----------------------
| | | | | | (x) 9 | | | | | | | | |
--------------------- ---- ------------------ ---------(x)--------- ------------------(x)--
| | | | | 10(x) | | | | 11 | 12 | | | 11 | 12 |
============ ============ =(x)======(x)= =====(x)======
| | | | | | | | | 13 | 14 | | | | | |
--------------------- ---------------------- ---------(x)--------- -----------------------
| | | | | | | | | | | | | 16 | 17 (x) |
---------(x)--------- ----------------(x)-- --------------------- --(x)-----------------
| | 20 | | | (x)20 | 21 | | | | | | | | 21 |
--------------------- ---------------------- --- ------(x)-------- ----------------(x)---
| | | | | 22 (x) | | | | 23 | 24 | | 22(x) | |
=(x)========= ============ =========(x)= =============
| 25 | | | | | | | | 25(x) | | | | 26 | 27 |
--------------------- --------------------- --------------------- ---------(x)----(x)---
| | (x)30 | | | | | | | | | | | | |
--------------------- --(x)---(x)---(x)-- ---------------------- --(x)------------------
| | | | | 31 | 32 | 33 | | | | | | 31 | 32 (x) |
---------(x)---(x)-- --------------------- ---------(x)----(x)-- -----------------------
| | 35 | 36 | | 34 (x) | | | | 35 | 36 | | | | |
============ ============ ============ =============
BET TABLE (9 no. - MEDIUM)
-----------------
(x = no. in matrices)
BET COST PROFIT
- x= 1 9 36- 9=27
- x= 1 9 36-18=18
(18)
- x= 1 9 36-27= 9
(27)
- x= 2 18 72-45=27
(45)
- x= 2 18 72-63= 9
(63)
- x= 3 27 108-90=18
(90)
- x= 4 36 144-126=18
- x= 5 45 180-171= 9
(171)
- x= 7 63 252-234=18
(234)
- x= 9 81 324-315= 9
( 315)
- x=12 108 432-423= 9
(423)
- x=16 144 576-567= 9
(567)
- x=22 198 792-765=27
(765)
- x=29 261 1044-1026=18
(1026)
- x=39 351 1404-1377=27
(1377)
- x=52 468 1872-1845=27
(1845)
- x=69 621 2484-2466=18
(2466)
- x=92 828 3312-3294=18
(3294)
---------------------------------------------------------- CASINO LIMIT X= 100
- x=123 1107 4428-4401=27
(4401)
- x=164 1476 5904-5877=27
(5877)
HOW TO PLAY ?
- mod de lucru : ‘’martingale’’(matrici opuse);
- sunt posibile 2 moduri de joc :
1) – mod 1 – intreg ; - fiecare matrice joaca conform BET TABLE ;
2) – mod 2 – jumatate - pozitiile notate cu (x)-INSIDE. Matricile care pierd -> DOUBLE !
- se adauga ultimul numar extras (LAST) si se calculeaza numarul ZERO;
- E=Engulf (apartine, cuprins in…) ; LAST=ultimul numar extras
RECOMANDARE : - la profit>(30-40)x(bet=1), parasiti jocul si reveniti. Jucati responsabil ! Folositi numai jetoane mici (ex. 10 bani, 1 cent, etc.).
La un profit care vi se pare rezonabil, aplicati metoda SCALPING (taie motzul si fugi !)
{-working mode: martingale (opposite matrices);
- 2 game modes are possible:
1) – mode 1 – integer; - ach matrix plays according to BET TABLE;
2) – mode 2 – half-positions denoted with (x)-INSIDE. The matricile that loses--> DOUBLE!
- add the last number extracted (LAST) and calculate the number ZERO;
-E = Engulf (belongs, contained in...); LAST = last number extracted
RECOMMENDATION:- at Profit > (30-40) x (bet = 1), leave the game and come back. Play responsibly! Use only small tokens (e.g. 10 money, 1 cent, etc.).
At a profit that you find reasonable, apply the SCALPING method (cut the Motcheon and run!)}
{- mode de travail : martingale (matrices opposées);
- 2 modes de jeu sont possibles :
1) - mode 1 - entier; - chaque matrice joue selon BET TABLE;
2) - mode 2 - demi-positions dénotées avec (x)-INSIDE). Les matrices qui perds->DOUBLE!
- ajouter le dernier numéro extrait (LAST) et calculer le nombre ZERO;
-E - Engulf (appartient, contenu dans...); LAST=dernier numéro extrait
RECOMMENDATION:- au profit (30-40) x (bet=1), quittez le jeu et revenez. Jouez de façon responsable! N'utilisez que de petits jetons (p. ex. 10 argent, 1 cent, etc.).
À un profit que vous trouvez raisonnable, appliquez la méthode SCALPING (coupez le Motcheon et exécutez !)}
EX.(E.G.)
- – mod 1 |->NEW |->NEW
SPIN 1. 2. | 3. 4. 5. 6. | 7.
M1 - (x1) - (x1) - x1 x1
M2 - x1 x1 x1 (x1) - x1
M3 (-) - x1 x1 x1 (x2) -
M4 (-) - x1 x1 x1 (x2) -
M5 - x1 (x1) - x1 x1 x1
M6 - x1 x1 x1 x1 x2 x1
M7 - (x1) (-) (-) - x1 x1
M8 - x1 x1 x1 (x1) - x1
- LAST=28 E M3,M4
- Play : 1xM1+1xM2+1xM5+1xM6+1xM7+1xM8+LAST(28)=2+ZERO=2
LAST=23 E M1,M7 –profit=14 (all active matrices on pos.’’x1’’-NEW session)
- Play : 1xM2+1xM3+1xM4+1xM5+1xM6+1xM8+LAST(23)=2+ZERO=2
LAST=35 E M5,M7
- Play : 1xM1+1xM2+1xM3+1xM4+1xM6+1xM8+LAST(35)=2+ZERO=2
LAST=24 E M1,M7
- Play : 1xM2+1xM3+1xM4+1xM5+1xM6+1xM8+LAST(24)=2+ZERO=2
LAST=27 E M2,M8
- Play : 1xM1+2xM3+2xM4+1xM5+2xM6+1xM7+LAST(27)=3+ZERO=3
LAST=29 E M3,M4 - profit=42 (NEW)
VAR. II
======
Cu step 3, cele 20 sub-matrici (S1,S2,…,S20), se pot reorganiza sub forma :
{ With step 3, the 20 sub-matrices (S1, S2,..., S20), can be reorganized in the form of:}
{ Avec step 3, les 20 sous-matrices (S1, S2,.., S20), peuvent être réorganisées sous la forme de :}
S1-S4-S7-S10 // S13-S16-S19-S2 // S5-S8-S11-S14 // S17-S20-S3-S6 // S9-S12-S15-S18
Se pot defini : {can be defined:} {peut être défini :}
S I : S1+S4+S7+S10
S II : S2+S13+S16+S19
S III : S5+S8+S11+S14
S IV : S3+S6+S17+S20
S V : S9+S12+S15+S18
Matrices :
M1 : S I + S II (S1+S2+S4+S7+S10+S13+S16+S19)
{1-2-3-4-7-8-13-14-18-19-23-24-28-29-33-34} (16 no.)
M2 : S I + S III (S1+S4+S7+S10+S5+S8+S11+S14)
1-2 // 7-8 // 13-14 // 18-19 // 9-10 // 15 // 20 // 25 (13 no.)
{1-2-7-8-9-10-13-14-15-18-19-20-25}
M3 : S I + S IV (S1+S4+S7+S10+S3+S6+S17+S20)
1-2 // 7-8 // 13-14 // 18-19 // 5-6 // 11-12 // 30 // 35-36 (15 no.)
{1-2-5-6-7-8-11-12-13-14-18-19-30-35-36}
M4 : S I + S V (S1+S4+S7+S10+S9+S12+S15+S18)
1-2 // 7-8 // 13-14 // 18-19 // 16-17 // 21-22 // 26-27 // 31-32 (16 no.)
{1-2-7-8-13-14-16-17-18-19-21-22-26-27-31-32}
M5 : S II + S III (S2+S13+S16+S19+S5+S8+S11+S14)
3-4 // 23-24 // 28-29 // 33-34 // 9-10 // 15 // 20 // 25 (13 no.)
{3-4-9-10-15-20-23-24-25-28-29-33-34}
M6 : S II + S IV (S2+S13+S16+S19+S3+S6+S17+S20)
3-4 // 23-24 // 28-29 // 33-34 // 5-6 // 11-12 // 30 // 35-36 (15 no.)
{3-4-5-6-11-12-23-24-28-29-30-33-34-35-36}
{3-4-5-6-11-12-23-24-28-29-30-33-34-35-36}
M7 : S II + S V (S2+S13+S16+S19+S9+S12+S15+S18)
3-4 // 23-24 // 28-29 // 33-34 // 16-17 // 21-22 // 26-27 // 31-32 (16 no.)
{3-4-16-17-21-22-23-24-26-27-28-29-31-32-33-34}
M8 : S III + S IV (S5+S8+S11+S14+S3+S6+S17+S20)
9-10 // 15 // 20 // 25 // 5-6 // 11-12 // 30 // 35-36 (12 no.)
{5-6-9-10-11-12-15-20-25-30-35-36}
M9 : S III + S V (S5+S8+S11+S14+S9+S12+S15+S18)
9-10 // 15 // 20 // 25 // 16-17 // 21-22 // 26-27 // 31-32 (13 no.)
{9-10-15-16-17-20-21-22-25-26-27-31-32}
M10 : S IV + S V (S3+S6+S17+S20+S9+S12+S15+S18)
5-6 // 11-12 // 30 // 35-36 // 16-17 // 21-22 // 26-27 // 31-32 (15 no.)
{5-6-11-12-16-17-21-22-26-27-30-31-32-35-36}
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1 M2 M3 M4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2 (x) 3 | | 1 | 2 | | | 1 (x) 2 | | | 1 | 2 | |
--(x)---------------- --(x)---(x)--------- ---------------------- --(x)----(x)---------
| 4 | | | | | | | | | 5 (x) 6 | | | | |
--------------------- --------------------- --(x)---------------- ----------------------
| 7 | 8 (x) | | 7 | 8 | 9 | | 7 | 8 | | | 7 | 8 (x) |
--(x)--------------- --(x)----(x)---(x)-- ---------(x)----(x)- --(x)----------------
| | | | | 10 | | | | | 11 | 12 | | | | |
============ ============ ============ =============
| 13(x)14 | | | 13 | 14 | 15 | | 13 | 14 (x) | | 13 | 14 | |
--------------------- --(x)---(x)---(x)-- --(x)--------------- --(x)----(x)---------
| | | 18 | | | | 18 | | | | 18 | | 16 | 17 | 18 |
--(x)----------(x)-- --------------------- ----------------(x)-- -----------------(x)--
| 19 | | | | 19 | 20(x) | | 19(x) | | | 19 | | 21 |
--------------------- --(x)--------------- -------------------- --(x)-----------------
| | 23(x)24 | | | | | | | | | | 22 | | |
============ ============ ============ =============
| | | | | 25(x) | | | | | | | (x)26 | 27 |
--(x)----(x)-------- ---------------------- ----------------(x)- -----------------(x)---
| 28 | 29 | | | | | | | | | 30 | | | | |
--------------------- --------------------- --- ----------------- --(x)---(x)-----------
| | (x)33 | | | | | | | | | | 31 | 32 | |
--(x)----------------- -------------------- ---------(x)----(x)-- ----------------------
| 34 | | | | | | | | | 35 | 36 | | | | |
============ ============ ============ =============
M5 M6 M7 M8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | | 3 | | | | 3 | | | (x) 3 | | | | |
--(x)----------(x)-- -----------------(x)-- -------------------- ----------(x)----(x)--
| 4 | | | | 4 | 5 | 6 | | 4 (x) | | | | 5 | 6 |
--------------------- --(x)---(x)---- ---- ---------------------- ---------------------
| | | 9 | | | | | | | | | | | | 9 |
----------------(x)-- --------------------- --------------------- --(x)---(x)----(x)--
| 10(x) | | | | 11 | 12 | | | | | | 10 | 11 | 12 |
============ =====(x)==(x)= ============ =============
| | (x) 15 | | | | | | | | | | | | 15 |
---------------------- --------------------- - --(x)---(x)--------- -----------------(x)---
| | | | | | | | | 16 | 17 | | | | | |
---------(x)-------- --------------------- ----------------(x)- -----------------------
| | 20 | | | | | | | | | 21 | | (x)20 | |
---------------(x)-- --------(x)---(x)-- --(x)----(x)--------- ----------------------
| (x)23 | 24 | | | 23 | 24 | | 22 | 23 | 24 | | | | |
============ ============ =========(x)= =============
| 25(x) | | | | | | | | 26 | 27 | | 25 | | |
--------------------- --(x)--------------- --(x)---(x)--------- --(x)-----------(x)---
| 28(x)29 | | | 28 | 29(x)30 | | 28 | 29 | | | | | 30 |
--------------------- ---------------------- --------------------- -----------------------
| | (x)33 | | | | 33 | | 31 | 32(x)33 | | | | |
--------------------- -- (x)----(x)---(x)-- --(x)---------------- -----------------(x)--
| 34(x) | | | 34 | 35 | 36 | | 34 | | | | (x)35 | 36 |
============ ============ ============ =============
M9 M10
ZERO ZERO
0 0
============ ============
| | | | | | | |
--------------------- ----------------(x)--
| | | | | (x) 5 | 6 |
----------------(x)- ----------------------
| | | 9 | | | | |
--(x)---------------- ---------(x)---(x)--
| 10 | | | | | 11 | 12 |
============ ============
| | (x)15 | | | | |
--(x)---------------- ---------(x)--------
| 16 | 17(x) | | 16 | 17 | |
--------------------- --(x)----------(x)--
| (x) 20 | 21 | | | | 21 |
----------------(x)-- ---------------------
| 22(x) | | | 22 | | |
============ =(x)=========
| 25(x)26 | 27 | | | 26 (x)27 |
---------------(x)-- ---------------------
| | | | | | (x)30 |
--------------------- --------------------
| 31 | 32 | | | 31(x)32 | |
--(x)----(x)-------- ---------------------
| | | | | | 35(x)36 |
============ ============
HOW TO PLAY ?
- mod de lucru : ‘’martingale’’(matrici opuse);
- fiecare matrice joaca independent. Matricile necastigatoare, se dubleaza ;
- la SUMA PROFIT>0, toate matricile active (necastigatoare), se reseteaza pe pos.’’x1’’ ;
- sunt posibile 2 moduri de joc :
1) – mod 1 – intreg ;
2) – mod 2 – jumatate, conform pozitiilor notate cu (x)-INSIDE;
- se adauga ultimul numar extras (LAST) si se calculeaza numarul ZERO;
- E=Engulf (apartine, cuprins in…) ; LAST=ultimul numar extras
{- working mode: martingale (opposite matrices);
- each matrix plays independently. The non-ageing matrices, doubles;
- at the PROFIT amount > 0, all active (non-uniting) matrices, is reset to pos. ' ' X1 ' ';
- 2 game modes are possible:
1) – mode 1 – integer;
2) – mode 2 – half, according to the positions denoted by (x)-INSIDE;
-Add the last number extracted (LAST) and calculate the number ZERO;
-E = Engulf (belongs, contained in...); LAST = last number extracted}
{- mode de travail : martingale (matrices opposées);
- chaque matrice joue indépendamment. Les matrices non-vieillissant, double;
- au montant du PROFIT> 0, toutes les matrices actives (non unitaires) sont réinitialisées pour pos. ' X1 ' ';
- 2 modes de jeu sont possibles :
1) - mode 1 - entier;
2) - mode 2 - moitié, selon les positions dénotées par (x)-INSIDE;
-Ajouter le dernier numéro extrait (LAST) et calculer le nombre ZERO;
-E - Engulf (appartient, contenu dans...); LAST=dernier numéro extrait}
RECOMANDARE : - la profit>(30-40)x(bet=1), parasiti jocul si reveniti. Jucati responsabil ! Folositi numai jetoane mici (ex. 10 bani, 1 cent, etc.). La un profit care vi se pare rezonabil, aplicati metoda SCALPING (taie motzul si fugi !).
{ RECOMMENDATION:- at Profit > (30-40) x (bet = 1), leave the game and come back. Play responsibly! Use only small tokens (e.g. 10 money, 1 cent, etc.). At a profit that you find reasonable, apply the SCALPING method (cut and run!).}
{ RECOMMENDATION:- au profit> (30-40) x (bet=1), quittez le jeu et revenez. Jouez de façon responsable! N'utilisez que de petits jetons (p. ex. 10 argent, 1 cent, etc.). À un profit que vous trouvez raisonnable, appliquez la méthode SCALPING (couper et courir!).}
EX.(E.G.)
- – mod 1 |->NEW |->NEW |->NEW
SPIN 1. 2. | 3. | 4. | 5.
M1 - x1 x1 x1 x1
M2 (-) - x1 (x1) -
M3 - (x1) - x1 x1
M4 - x1 (x1) - x1
M5 (-) - x1 (x1) -
M6 - (x1) - x1 x1
M7 - x1 (x1) - x1
M8 (-) (-) - (x1) -
M9 (-) - (x1) (-) -
M10 - (x1) (-) - x1
- LAST=9 E M2,M5,M8,M9
- Play : 1xM1+1xM3+1xM4+1xM6+1xM7+1xM10+LAST(9)=3+ZERO=3
LAST=30 E M3,M6,M8,M10 – profit=9 (all active matrices on pos.’’x1’’-NEW session)
- Play : 1xM1+1xM2+1xM4+1xM5+1xM7+1xM9+LAST(30)=3+ZERO=3
LAST=21 E M4,M7,M9,M10 – profit=21 (NEW)
- Play : 1xM1+1xM2+1xM3+1xM5+1xM6+1xM8+LAST(21)=3+ZERO=3
Comentarii
Trimiteți un comentariu