ROULETTE 36_1
ROULETTE 36_1 (INSIDE)
***************
(DRAGU’s method)
Punct de referinta : ZERO
Configuratie ruleta – sens invers trigonometric (clock), impartita in 20 sub-matrici - cu step 2,6,8 :
{ Reference point: ZERO
Roulette configuration - reverse trigonometric (clock), divided into 20 sub-matrices-with step 2, 6, 8:}
{ Point de référence: ZERO
Roulette configuration-reverse trigonométrique (horloge), divisé en 20 sous-matrices-avec l'étape 2, 6, 8:}
S1 : 32-15 S5 : 34 S9 : 8-23 S13 : 1-20 S17 : 29-7
S2 : 19-4 S6 : 6-27 S10 : 10 S14 : 14-31 S18 : 28-12
S3 : 21-2 S7 : 13-36 S11 : 5-24 S15 : 9 S19 : 35-3
S4 : 25-17 S8 : 11-30 S12 : 16-33 S16 : 22-18 S20 : 26
Desfasurare grafica : {graphical progress:} { progrès graphiques:}
(20 sub-matrices)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
- o - - o - - o - - o - - o - - - - - - -
- - o - - o - - o - - - - - - - o - - o -
- - - o - - - - - - - o - - o - - o - - o
- - - - - - o - - o - - o - - o - - o - -
- o o - - - - - o o - - - - - o - - - - -
- - - o o - - - - - o - - - - - o o - - -
- - - - - o - - - - - o o - - - - - o o -
- - - - - - o o - - - - - o o - - - - - o
- o - - - - - - o - o - - - - - - o - o -
- - o - o - o - - - - - - o - o - - - - -
- - - - - - - o - o - o - - - - - - o - o
- - - o - o - - - - - - o - o - o - - - -
Mini-matrices :
m1 : S1+S4+S7+S10+S13
{32-15 // 25-17 // 13-36 // 10 // 1-20} - (9 no.)
1 – 10 – 13 – 15 – 17 – 20 – 25 – 32 - 36
m2 : S2+S5+S8+S16+S19
{19-4 // 34 // 11-30 // 22-18 // 35-3} - (9 no.)
3 – 4 -11 – 18 – 19 – 22 – 30 – 34 - 35
m3 : S3+S11+S14+S17+S20
{21-2 // 5-24 // 14-31 // 29-7 // 26} - (9 no.)
2 – 5 – 7 – 14 – 21 -24 – 26 – 29 – 31
m4 : S6+S9+S12+S15+S18
{6-27 // 8-23 // 16-33 // 9 // 28-12} - (9 no.)
6 – 8 – 9 -12 – 16 – 23 – 27 -28 – 33
m5 : S1+S2+S8+S9+S15
{32-15 // 19-4 // 11-30 // 8-23 // 9} - (9 no.)
4 – 8 – 9 – 11 – 15 – 19 – 23 – 30 -32
m6 : S3+S4+S10+S16+S17
{21-2 // 25-17 // 10 // 22-18 // 29-7} - (9 no.)
2 – 7 – 10 -17 – 18 – 21 – 22 – 25 - 29
m7 : S5+S11+S12+S18+S19
{34 // 5-24 // 16-33 // 28-12 // 35-3} - (9 no.)
3 – 5 – 12 – 16 – 24 – 28 – 33 – 34 - 35
m8 : S6+S7+S13+S14+S20
{6-27 // 13-36 // 1-20 // 14-31 // 26} - (9 no.)
1 – 6 – 13 – 14 – 20 – 26 – 27 – 31 - 36
m9 : S1+S8+S10+S17+S19
{32-15 // 11-30 // 10 // 29-7 // 35-3} - (9 no.)
3 – 7 – 10 – 11 – 15 – 29 – 30 – 32 - 35
m10 : S2+S4+S6+S13+S15
{19-4 // 25-17 // 6-27 // 1-20 // 9} - (9 no.)
1- 4 – 6 – 9 – 17 – 19 – 20 – 25 - 27
m11 : S7+S9+S11+S18+S20
{13-36 // 8-23 // 5-24 // 28-12 // 26} - (9 no.)
5 – 8 – 12 – 13 – 23 – 24 – 26 – 28 - 36
m12 : S3+S5+S12+S14+S16
{21-2 // 34 // 16-33 // 14-31 // 22-18} - (9 no.)
2 – 14 – 16 – 18 – 21 – 22 – 31 – 33 – 34
Reprezentare grafica : {graphic representation:} {représentation graphique :}
m1 m2 m3 m4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | | | | | | 3 | | | 2 (x) | | | | |
--(x)---------------- ----------------(x)-- --------------------- -----------------------
| | | | | 4 (x) | | | | 5 | | | | (x) 6 |
---------------------- --------------------- --(x)----(x)-------- ----------------------
| | | | | | | | | 7 | | | | | 8 (x) 9 |
--(x)---------------- ---------(x)--------- ---------------------- -----------------------
| 10 | | | | | 11 | | | | | | | | | 12 |
============ ============ ============ =========(x)==
| 13 | | 15 | | | | | | (x)14 | | | | | |
--(x)---(x)----(x)-- --------------------- --------------------- -----------------------
| | 17 | | | | | 18 | | | | | | 16(x) | |
---------------------- --(x)----------(x)-- --------------------- -----------------------
| | 20 | | | 19 | | | | | (x) 21 | | | | |
---------(x)--------- ---------------------- ---------------------- -----------------------
| | | | | 22(x) | | | | (x) 24 | | (x)23 | |
============ ============ ============ =============
| 25 | | | | | | | | | 26 (x) | | | | 27 |
--(x)---------------- ---------------------- --------------------- -----------------(x)--
| | | | | | | 30 | | | 29 (x) | | 28(x) | |
--------------------- ----------------(x)-- --------------------- -----------------------
| (x)32 | | | | | | | 31 | | | | | (x)33 |
----------------(x)- --(x)---------------- --(x)---------------- ----------------------
| | | 36 | | 34 | 35(x) | | | | | | | | |
============ ============ ============ =============
m5 m6 m7 m8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | | | | | 2 | | | | (x) 3 | | 1 (x) | |
--(x)---------------- ---------(x)--------- --------------------- -----------------------
| 4 | | | | | | | | | 5 (x) | | | | 6 |
---------(x)-—(x)-- ---------------------- --------------------- ----------------(x)---
| | 8 | 9 | | 7 (x) | | | | | | | | | |
---------------------- ---------------------- -----------------(x)- ----------------------
| (x) 11 | | | 10(x) | | | | | 12 | | | | |
============ ============ ============ =(x)=========
| | | 15 | | | | | | | | | | 13 | 14 (x) |
----------------(x)-- ---------(x)---(x)-- --(x)--------------- -----------------------
| | | | | | 17 | 18 | | 16 | | | | | | |
--------------------- ---------------------- --------------------- ------ --(x)----------
| 19(x) | | | | | 21 | | | | | | | 20 | |
--------------------- ----------------(x)-- --------------------- -----------------------
| (x)23 | | | 22(x) | | | | | 24 | | | | |
============ ============ =========(x)= =====(x)======
| | | | | 25 | | | | | | | | | 26 | 27 |
----------------(x)-- --(x)---(x)--------- ---------------------- -----------------(x)---
| | | 30 | | | 29 | | | 28(x) | | | | | |
---------------------- ---------------------- --------------------- --(x)-----------------
| | 32(x) | | | | | | | | 33 | | 31 | | |
--------------------- ---------------------- --(x)----(x)---(x)-- -----------------------
| | | | | | | | | 34 | 35 | | | | (x)36 |
============ ============ ============ =============
m9 m10 m11 m12
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | | 3 | | 1 (x) | | | | | | | | 2 | |
----------------(x)-- --------------------- --------------------- ---------(x)----------
| | | | | 4 | (x) 6 | | (x) 5 | | | | | |
--------------------- --(x)---------------- --------------------- ----------------------
| 7 (x) | | | | (x) 9 | | | 8 | | | | | |
---------------------- --------------------- ---------(x)-------- -----------------------
| 10 | 11 | | | | | | | | | 12 | | | | |
=(x)==(x)===== ============ =========(x)= =====(x)======
| | | 15 | | | | | | 13(x) | | | | 14 | |
----------------(x)-- ---------(x)-------- --------------------- -----------------(x)--
| | | | | | 17 | | | | | | | 16(x) | 18 |
--------------------- --------------------- --------------------- -----------------------
| | | | | 19 | 20 (x) | | | | | | | | 21 |
--------------------- --(x)--------------- ----------------(x)- ----------------(x)--
| | | | | | | | | (x) 23 | 24 | | 22 | | |
============ ============ ============ =(x)==========
| | | | | 25 | | 27 | | | 26 | | | | | |
--------------------- --(x)----------(x)-- ---------(x)-------- -----------------------
| (x)29 | 30 | | | | | | 28 | | | | | | |
----------------(x)-- --------------------- --(x)--------------- --(x)-----------------
| (x)32 | | | | | | | | | | | 31 | (x) 33 |
--------------------- --------------------- ----------------(x)-- ----------------------
| (x)35 | | | | | | | | | 36 | | 34(x) | |
============ ============ ============ =============
BET TABLE (9 no.)
----------------
(x = no. in matrices)
BET COST PROFIT
- x= 1 9 36- 9=27
- x= 1 9 36-18=18
(18)
- x= 1 9 36-27= 9
(27)
- x= 2 18 72-45=27
(45)
- x= 2 18 72-63= 9
(63)
- x= 3 27 108-90=18
(90)
- x= 4 36 144-126=18
- x= 5 45 180-171= 9
(171)
- x= 7 63 252-234=18
(234)
- x= 9 81 324-315= 9
( 315)
- x=12 108 432-423= 9
(423)
- x=16 144 576-567= 9
(567)
- x=22 198 792-765=27
(765)
- x=29 261 1044-1026=18
(1026)
- x=39 351 1404-1377=27
(1377)
- x=52 468 1872-1845=27
(1845)
- x=69 621 2484-2466=18
(2466)
- x=92 828 3312-3294=18
(3294)
---------------------------------------------------------- CASINO LIMIT X= 100
- x=123 1107 4428-4401=27
(4401)
- x=164 1476 5904-5877=27
(5877)
HOW TO PLAY ?
- sunt posibile 2 moduri de joc :
1) – mod 1 : - pe serii de numere (intreg) : se considera cele 12 mini-matrici ca niste serii de numere (m1,m2,…,m12). Se incepe cu 1x(m1) si se adauga (secvential), celelalte mini-matrici. Fiecare matrice joaca independent - conform BET TABLE (9 no.) ;
2) – mod 2 : - jumatate – conform pozitiilor notate cu (x)-INSIDE : matricile care pierd, se dubleaza.
- daca SUMA PROFIT>0, toate matricile active (necastigatoare), se reseteaza pe pos.’’x1’’. Se incepe o noua sesiune de joc (NEW).
- E=Engulf (apartine, cuprins in…)
{- 2 game modes are possible:
1) – Mode 1: - on series of numbers (integer): consider the 12 mini-matrices as series of numbers (m1, m2,..., m12). Start with 1x (m1) and add (sequentially), the other mini-matrices. Each matrix plays independently-according to BET TABLE (9 No.);
2) – Mode 2: - half – according to the positions noted with (x)-INSIDE: The lost matrices, it doubles.
-If the PROFIT amount > 0, all the active (uniting) matrices, is reset to pos. ' ' X1 ' '. It starts a new game session (NEW).
-E = Engulf (belongs, contained in...)}
{- 2 modes de jeu sont possibles :
1) - Mode 1: - sur la série de nombres (intégriste) : considérez les 12 mini-matrices comme série de nombres (m1, m2,..., m12). Commencez par 1x (m1) et ajoutez (séquentiellement), les autres mini-matrices. Chaque matrice joue indépendamment-selon BET TABLE (9 No.);
2) - Mode 2: - moitié - selon les positions notées avec (x)-INSIDE: Les matrices perdues, il double.
- si le montant de profit> 0, toutes les matrices actives (d'unité), est réinitialisée à pos. ' ' X1 ' '. Il commence une nouvelle session de jeu (NEW).
-E - Engulf (appartient, contenu dans...)}
EX.1 – mod 1 |->NEW |->NEW |->NEW
SPIN 1. 2. 3. 4. 5. | 6. | 7. 8. | 9.
m1 (x1) - - - - - - - -
m2 - x1 x1 x1 (x2) - - - -
m3 - - - - x1 x1 x1 (x1) -
m4 - - - - - - - - (x1)
------------------------------------------------------------------------------
m5 - - - - - - - - -
- Play : 1x(m1) + ZERO=1 ; LAST=25 E (m1) – profit=26
- Play : 1x(m2) + ZERO=1 ; LAST=33
- Play : 1x(m2) + ZERO=1 ; LAST=23
- Play : 1x(m2) + ZERO=1 ; LAST=24
- Play : 2x(m2) + 1x(m3) + ZERO=1 ;
LAST=4 E (m2) – profit=39 (all active matrices on pos.’’x1’’ – NEW session)
- Play : 1x(m3) + ZERO=1 ; LAST=0 (ZERO !) – profit=65 (NEW)
- Play : 1x(m3) + ZERO=1 ; LAST=34
- Play : 1x(m3) + ZERO=1 ; LAST=7 E (m3) - profit=81 (NEW)
- Play : 1x(m4) + ZERO=1 ; LAST=8 E (m4) - profit=107
sau {or} {ou}
EX.2 – mod 1 |->NEW
SPIN 1. 2. 3. 4. 5. 6. 7. 8. 9. | 10. 11. 12.
m1 x1 x1 x1 x2 x2 x3 x4 x5 (x7) -
m2 - x1 x1 x1 x2 x2 (x3) - - -
m3 - - x1 (x1) - - - - - -
m4 - - - x1 (x1) - - - - -
--------------------------------------------------------------------------------------
m5 x1 x1 x1 (x2) - -
m6 - x1 x1 x1 x2 x1
m7 - - (x1) - - -
m8 - - - x1 (x1) -
--------------------------------------------------------------------------------------
m9 x1 x1
m10 - x1
m11 - -
m12 - -
- Play : 1x(m1) + ZERO=1 ; LAST=23
- Play : 1x(m1)+1x(m2)+ZERO=1 ; LAST=5
- Play : 1x(m1)+1x(m2)+1x(m3)+ZERO=1 ; LAST=33
- Play : 2x(m1)+1x(m2)+1x(m3)+1x(m4)+ZERO=2 ; LAST=21 E (m3)
- Play : 2x(m1)+2x(m2)+1x(m4)+1x(m5)+ZERO=2 ; LAST=6 E (m4)
- Play : 3x(m1)+2x(m2)+1x(m5)+1x(m6)+ZERO=2 ; LAST=12
- Play : 4x(m1)+3x(m2)+1x(m5)+1x(m6)+1x(m7)+ZERO=3 ; LAST=34 E (m2),(m7)
- Play : 5x(m1)+2x(m5)+1x(m6)+1x(m8)+ZERO=3 ; LAST=8 E (m5)
- Play : 7x(m1)+2x(m6)+1x(m8)+1x(m9)+ZERO=3
LAST=20 E (m1),(m8) – profit=72 (NEW)
VAR. II
======
Cu step 5, cele 12 mini-matrici se pot organiza astfel :
{ With step 5, the 12 mini-matrices can be organized as follows:}
{ Avec l'étape 5, les 12 mini-matrices peuvent être organisées comme suit :}
m1 – m6 – m11 – m4 – m9 – m2 – m7 –m12 – m5 – m10 – m3 – m8
Se pot defini urmatoarele Maxi-matrici (excludem numerele redondante) :
{ You can define the following Maxi-matrices (excluding redondante numbers):}
{ Vous pouvez définir les Maxi-matrices suivantes (à l'exclusion des numéros redondante) :}
M1 : m1+m6 1–10–13–15–17–20–25–32-36 // 2–7–10-17–18–21–22–25–29
{1–2-7-10–13–15–17–18-20–21-22-25–29-32-36} - (15 no.)
M2 : m11+m4 5–8–12–13–23–24–26–28–36 // 6-8–9-12–16–23–27-28–33
{5–6-8–9-12–13–16-23–24–26–27-28–33-36} - (14 no.)
M3 : m9+m2 3–7–10–11–15–29–30–32-35 // 3–4-11–18–19–22–30–34-35
{3–4-7-10-11–15-18–19–22–29-30–32-34-35} - (14 no.)
M4 : m7+m12 3–5–12–16–24–28–33–34–35 // 2–14–16–18–21–22–31–33–34
{2–3-5-12-14–16–18–21–22–24-28-31–33–34-35} - (15 no.)
M5 : m5+m10 4–8–9–11–15–19–23–30-32 // 1-4–6–9–17–19–20–25-27
{1-4–6–8-9–11-15-17–19–20–23-25-27-30-32} - (15 no.)
M6 : m3+m8 2–5–7–14–21-24–26-29–31 // 1–6–13–14–20–26–27–31-36
{1–2-5-6–7-13–14–20–21-24-26–27–29-31-36} - (15 no.)
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1 M2 M3
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 | 2 (x) | | | | | | | (x) 3 |
--(x)---------------- ----------------(x)-- --(x)----------------
| | | | | (x) 5 | 6 | | 4 | | |
---------------------- --------------------- ----------------------
| 7(x) | | | | 8 | 9 | | 7 | | |
--------------------- ---------(x)---(x)-- --(x)----------------
| 10(x) | | | | | 12 | | 10 | 11(x) |
=========(x)= ============ ============
| 13 | | 15 | | 13(x) | | | | (x) 15 |
--(x)---------------- --------------------- ---------------------
| | 17 | 18 | | 16 | | | | | (x) 18 |
---------(x)---(x)-- --(x)---------------- ----------------------
| | 20 | 21 | | | | | | 19(x) | |
---------------------- ---------(x)---(x)-- ---------------------
| 22 | | | | | 23 | 24 | | 22(x) | |
=(x)========= ============ ============
| 25 | | | | | 26(x)27 | | | | |
---------------------- --------------------- ---------(x)---(x)--
| | 29(x) | | 28 | | | | | 29 | 30 |
---------------------- --(x)--------------- ---------------------
| (x)32 | | | | (x)33 | | (x) 32 | |
----------------(x)-- ---------------------- ---------------------
| | | 36 | | | (x)36 | | 34(x) 35 | |
============ ============ ============
M4 M5 M6
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | 2 (x) 3 | | 1 | | | | 1 | 2 | |
--------------------- --(x)---------------- --(x)---(x)----(x)-
| (x) 5 | | | 4 | | 6 | | | 5 | 6 |
--------------------- ----------------(x)-- ----------------------
| | | | | (x) 8 | 9 | | 7 | | |
---------------------- --------------------- --(x)----------------
| | (x)12 | | (x)11 | | | | | |
============ ============ ============
| | 14 | | | | (x)15 | | 13 | 14 | |
--(x)----(x)---(x)-- --------------------- --(x)---(x)---------
| 16 | | 18 | | | 17 | | | | | |
--------------------- --(x)----(x)-------- ---------------------
| | | 21 | | 19 | 20 | | | (x) 20 | 21 |
--(x)----------(x)-- --------------------- ----------------(x-)-
| 22 | | 24 | | | 23(x) | | | | 24 |
============ ============ ============
| | | | | 25 | (x)27 | | | 26 | 27 |
--------------------- --(x)---------------- ---------(x)----(x)--
| 28(x) | | | | | 30 | | | 29 | |
--------------------- ---------(x)---(x)-- --(x)---------------
| 31 | | 33 | | | 32 | | | 31 | | |
- -(x)----(x)---(x)-- ---------------------- ----------------------
| 34 | 35 | | | | | | | | (x)36 |
============ ============ ============
BET TABLE (15 no.)
(x = no. in matrices)
BET COST PROFIT
- x=1 15 36-15=21
- x=1 15 36-30=6
(30)
- x=2 30 72-60=12
(60)
- x=3 45 108-105=3
(105)
- x=6 90 216-195=21
(195)
- x=10 150 360-345=15
(345)
- x=17 255 612-600=12
(600)
- x=29 435 1044-1035=9
(1035)
- x=50 750 1800-1785=15
(1785)
- x=86 1290 3096-3075=21
(3075)
------------------------ CASINO LIMIT X=100
EX.(E.G.)
- – mod 1 |->NEW |->NEW
SPIN 1. 2. 3. | 4. 5. | 6.
M1 - x1 (x1) (-) - x1
M2 (-) (-) - x1 (x1) -
M3 - x1 (x1) - x1 x1
M4 (-) - x1 x1 (x2) -
M5 - x1 (x1) (-) - x1
M6 - (x1) - (x1) - x1
- LAST=16 E M2,M4
- Play : 1xM1+1xM3+1xM5+1xM6+LAST(16)=2+ZERO=2 ; LAST=26 E M2,M6
- Play : 1xM1+1xM3+1xM4+1xM5+LAST(26)=2+ZERO=2
LAST=15 E M1,M3,M5 – profit=19 (all active matrices on pos.’’x1’’ – NEW session)
- Play : 1xM2+1xM4+1xM6+LAST(15)=2+ZERO=2 ; LAST=20 E M1,M5,M6
- Play : 1xM2+1xM3+2xM4+LAST(20)=2+ZERO=2
Comentarii
Trimiteți un comentariu