ROULETTE 15
ROULETTE 15 (INSIDE)
************
(DRAGU’s method)
Varianta neconventionala – 8 sub-matrici S1-S8 (impartire alternanta 4 no. – 5 no.) – step 5 pe cele 3 duzini (1-12; 13-24; 25-36) :
{ Non-conventional variant – 8 sub-matrices S1-S8 (dividing alternation 4 no. – 5 no.) – step 5 on the 3 dozen (1-12; 13-24; 25-36):}
{ Variante non conventionnelle : 8 sous-matrices S1-S8 (division de l'alternance 4 no. - 5 no.) - Étape 5 sur la 3 douzaine (1-12; 13-24; 25-36) :}
VAR. I
=====
ZERO
0
0
============
| 1 | 2 | 3 | S1 : 1-6-11-4 (4 no.)
---------------------
| 4 | 5 | 6 |
--------------------- S2 : 9-2-7-12-5 (5 no.)
| 7 | 8 | 9 |
---------------------
| 10 | 11 | 12 | S3 : 10-3-8-13 (4 no.)
============
| 13 | 14 | 15 |
--------------------- S4 : 18-23-16-21-14 (5 no.)
| 16 | 17 | 18 |
---------------------
| 19 | 20 | 21 |
--------------------- S5 : 19-24-17-22 (4 no.)
| 22 | 23 | 24 |
============ S6 : 15-20-25-30-35 (5 no.)
| 25 | 26 | 27 |
---------------------
| 28 | 29 | 30 | S7 : 28-33-26-31 (4 no.)
---------------------
| 31 | 32 | 33 |
--------------------- S8 : 36-29-34-27-32 (5 no.)
| 34 | 35 | 36 |
============
Desfasurare grafica pentru cele 8 sub-matrici :
{ Graphical deployment for the 8 sub-matrices:}
{ Déploiement graphique pour les 8 sous-matrices :}
S1 S2 S3 S4 S5 S6 S7 S8
- o o - o - - o -
- o - o - - o - o
- o - - - - o o o
- - o o o o - - -
- - o - o o - o -
- - - o - o o - o
Se pot defini matricile de lucru (6 matrici x 18 no.) :
{ You can define the working matrices (6 arrays x 18 no.):}
{ Vous pouvez définir les matrices de travail (6 tableaux x 18 no.) :}
M1 : (S1+S2+S4+S7) 1-6-11-4 // 9-2-7-12-5 // 18-23-16-21-14 // 28-33-26-31
{1-2-4-5-6-7-9-11-12-14-16-18-21-23-26-28-31-33}
M2 : (S1+S3+S6+S8) 1-6-11-4 // 10-3-8-13 // 15-20-25-30-35 // 36-29-34-27-32
{1-3-4-6-8-10-11-13-15-20-25-27-29-30-32-34-35-36}
M3 : (S1+S6+S7+S8) 1-6-11-4 // 15-20-25-30-35 // 28-33-26-31 // 36-29-34-27-32
{1-4-6-11-15-20-25-26-27-28-29-30-31-32-33-34-35-36}
M4 : (S2+S3+S4+S5) 9-2-7-12-5 // 10-3-8-13 // 18-23-16-21-14 // 19-24-17-22
{2-3-5-7-8-9-10-12-13-14-16-17-18-19-21-22-23-24}
M5 : (S2+S4+S5+S7) 9-2-7-12-5 // 18-23-16-21-14 // 19-24-17-22 // 28-33-26-31
{2-5-7-9-12-14-16-17-18-19-21-22-23-24-26-28-31-33}
M6 : (S3+S5+S6+S8) 10-3-8-13 // 19-24-17-22 // 15-20-25-30-35 // 36-29-34-27-32
{3-8-10-13-15-17-19-20-22-24-25-27-29-30-32-34-35-36}
Representation :
M1 M2 M3
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 (x) 2 | | | 1 | | 3 | | 1 | | |
--------------------- --(x)----------(x)-- --(x)----------------
| 4 (x) 5 | 6 | | 4 | | 6 | | 4 | (x) 6 |
---------------(x)-- --------------------- ---------------------
| 7 (x) | 9 | | | 8 | | | | | |
--------------------- ---------(x)-------- ----------------------
| | 11(x)12 | | 10 | 11 | | | | 11 | |
============ =(x)========= =====(x)=====
| | 14(x) | | 13 | (x)15 | | | | 15 |
--------------------- --------------------- -----------------(x)--
| 16 | | 18 | | | | | | | | |
--(x)----------(x)-- ----------(x)--------- ----------------------
| | | 21 | | | 20 | | | (x) 20 | |
--------------------- --------------------- ---------------------
| | 23 | | | | | | | | | |
=====(x)===== =(x)========= ============
| | 26 | | | 25 | | 27 | | 25 | 26 | 27 |
--------------------- ----------------(x)-- --(x)----(x)---(x)--
| 28 | | | | | 29 | 30 | | 28 | 29 | 30 |
--(x)----------(x)-- ---------(x)-------- ----------------------
| 31 | | 33 | | | 32 | | | 31 | 32 | 33 |
--------------------- --(x)---------------- --(x)----(x)---(x)--
| | | | | 34 | 35 (x)36 | | 34 | 35 | 36 |
============ ============ ============
M4 M5 M6
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | 2 (x) 3 | | | 2 | | | | | 3 |
--------------------- ---------(x)--------- ----------------(x)-
| | 5 (x) | | | 5 | | | | | |
--------------------- --(x)--------------- ----------(x)--------
| 7 | 8 (x) 9 | | 7 | | 9 | | | 8 | |
--(x)---------------- ----------------(x)-- ----------------------
| 10 | | 12 | | | | 12 | | 10 | | |
=========(x)= =====(x)===== =(x)======(x)=
| 13 | 14 | | | | 14 | | | 13 | | 15 |
--(x)---(x)--------- ----------------(x)-- ---------------------
| 16 | 17 | 18 | | 16(x)17 | 18 | | | 17 | |
----------------(x)-- ---------------------- ---------(x)--------
| 19 | | 21 | | 19 | | 21 | | 19 | 20 | |
--(x)---------------- --(x)----------(x)-- --(x)-----------(x)--
| 22 | 23(x)24 | | 22 | 23 | 24 | | 22 | | 24 |
============ =====(x)===== ============
| | | | | | 26 | | | 25 | | 27 |
--------------------- ---------------------- --(x)-----------(x)--
| | | | | 28 | | | | | 29 | 30 |
--------------------- --(x)--------------- ---------(x)---------
| | | | | 31 | (x)33 | | | 32 | |
--------------------- ---------------------- ----------------(x)--
| | | | | | | | | 34(x)35 | 36 |
============ ============ ============
HOW TO PLAY ?
1) – MODE 1 – (intreg) (whole)
- jucati numai jetoane mici (ex. 10 bani, 1 cent, etc.)
- orice numar extras apare in 3 matrici, deci probabilitatea de aparitie este 50%(3/6). Rezulta 2 modalitati de joc : - fie ‘’direct’’, pe matricile corespunzatoare ultimului no. extras (LAST) ; - fie ‘’martingale’’, pe matricile opuse – la care se adauga si LAST ;
- fiecare matrice joaca independent ;
- matricile necastigatoare se dubleaza.
{-Play only small tokens (e.g. 10 Bani, 1 cent, etc.)
-Any extracted number appears in 3 matrices, so the probability of appearance is 50%(3/6). It results in 2 modes of play:-either ' ' direct ' ', on the matrices corresponding to the last no. extract (LAST); -either ' ' martingale ' ', on the opposite matrices – to which the LAST is added;
-Each matrix plays independently;
-The loses matrices - doubles.}
{-Jouer uniquement les petits jetons (p. ex. 10 Bani, 1 cent, etc.)
-Tout nombre extrait apparaît en 3 matrices, de sorte que la probabilité d'apparition est de 50%(3/6). Il en résulte 2 modes de jeu: soit ' ' direct ', sur les matrices correspondant au dernier no. Extrait (LAST); -soit ' ' martingale ', sur les matrices opposées - à laquelle le LAST est ajouté;
-Chaque matrice joue indépendamment;
-Les matrices qui perdent - doublent.}
EX.(E.G.)
- (martingale)
SPIN 1. 2. 3.
M1 (-) - (x1)
M2 (-) (-) -
M3 (-) (-) -
M4 - x1 (x2)
M5 - x1 (x2)
M6 - (x1) -
- LAST=11 E M1,M2,M3
- Play : 1xM4+1xM5+1xM6+LAST(11)=2+ZERO=2 ; LAST=27 E M2,M3,M6
- Play : 1xM1+2xM4+2xM5+LAST(27)=3+ZERO=3 ; LAST=14 E M1,M4,M5 - profit=62
2) – MODE 2 – (intreg) (whole)
- se joaca serii de numere. Se incepe cu (1xM1+ZERO=1) si se continua – secvential – cu urmatoarele matrici. Matricile care pierd, se dubleaza.
- la SUMA PROFIT>0, toate matricile active (care pierd), se reseteaza pe pos.’’x1’’-NEW session.
{- play series of numbers. It starts with (1xM1 + ZERO = 1) and continues – sequential – with the following matrices. The matricile that loses, doubles.
- at the PROFIT amount > 0, all active (losing) matrices is reset to pos. ' ' X1 ' '-NEW session.}
{- lire la série de nombres. Il commence par (1xM1+ZERO=1) et se poursuit - séquentiel - avec les matrices suivantes. Le matricile qui perd, double.
- au montant profit> 0, toutes les matrices actives (perdantes) sont réinitialisées à pos. ' ' X1 ' '-NEW session.}
EX.(E.G.)
- |->NEW
SPIN 1. 2. 3. 4. | 5. 6.
M1 (x1)
M2 - (x1)
M3 - x1 (x2)
---------------------------------------------------
M4 x1 (x1)
M5 - (x1)
M6 - x1
- Play : 1xM1+ZERO=1 ; LAST=23 E M1 – profit=17
- Play : 1xM2+ZERO=1 ; LAST=35 E M2 – profit=34
- Play : 1xM3+ZERO=1 ; LAST=24
- Play : 2xM3+1xM4+ZERO=2 ; LAST=31 E M3 – profit=31 (NEW)
- Play : 1xM4+1xM5+ZERO=1 ; LAST=7 E M4,M5 – profit=66
3) – MODE 3 – half
- se joaca pozitiile notate cu (x)-INSIDE;
- serii de numere.
{- play the positions denoted with (x)-INSIDE;
- series of numbers.}
{- jouer les positions dénotées avec (x)-INSIDE;
- série de nombres.}
EX.(E.G.)
|->NEW |->NEW |->NEW |->NEW
|->NEW |->NEW |->NEW |->NEW
SPIN 1. 2. | 3. 4. 5. 6. | 7. | 8. | 9. 10.
M1 x1 (x2) (x1)
M2 - (x1) - (x1)
M3 - x1 (x2) - (x1)
-----------------------------------------------------------------------------------------------
M4 - x1 x2 (x4) - x1
M5 - (x1) -
M6 - x1 (x1)
-----------------------------------------------------------------------------------------------
- Play : 1xM1+ZERO=1 ; LAST=10
- Play : 2xM1+1xM2+ZERO=1 ; LAST=1 E M1,M2 – profit=8 (NEW)
- Play : 1xM3+ZERO=1 ; LAST=9
- Play : 2xM3+1xM4+ZERO=1 ; LAST=20 E M3
- Play : 2xM4+1xM5+ZERO=1 ; LAST=33 E M5
- Play : 4xM4+1xM6+ZERO=2 ; LAST=16 E M4 – profit=5 (NEW)
- Play : 1xM6+1xM1+ZERO=1 ; LAST=33 E M1,M6 – profit=17 (NEW)
- Play : 1xM2+ZERO=1 ; LAST=35 E M2 – profit=23 (NEW)
- Play : 1xM3+ZERO=1 ; LAST=36 E M3 – profit=29
VAR. II
======
Desfasurare grafica : {Graphical deployment} {Déploiement graphique}
S1 S2 S3 S4 S5 S6 S7 S8
- o o o - - - - -
- - o o o - - - -
- - - o o o - - -
- - - - o o o - -
- - - - - o o o -
- - - - - - o o o
- o - - - - - o o
- o o - - - - - o
Se reconsidera definirea sub-matricilor S (cu step 3) :
( rezulta ordinea : S1-S4-S7-S2-S5-S8-S3-S6)
{ Reconsidering the definition of sub-matrices S (with step 3):
(result order: S1-S4-S7-S2-S5-S8-S3-S6)}
{ Reconsidérer la définition de sous-matrices S (avec step 3) :
(ordre de résultat: S1-S4-S7-S2-S5-S8-S3-S6)}
ZERO
0
0
============
| 1 | 2 | 3 | S1 : 1-6-11-4 (4 no.)
----------------------
| 4 | 5 | 6 |
---------------------- S4 : 9-2-7-12-5 (5 no.)
| 7 | 8 | 9 |
----------------------
| 10 | 11 | 12 | S7 : 10-3-8-13 (4 no.)
============
| 13 | 14 | 15 |
---------------------- S2 : 18-23-16-21-14 (5 no.)
| 16 | 17 | 18 |
----------------------
| 19 | 20 | 21 |
---------------------- S5 : 19-24-17-22 (4 no.)
| 22 | 23 | 24 |
============ S8 : 15-20-25-30-35 (5 no.)
| 25 | 26 | 27 |
----------------------
| 28 | 29 | 30 | S3 : 28-33-26-31 (4 no.)
----------------------
| 31 | 32 | 33 |
---------------------- S6 : 36-29-34-27-32 (5 no.)
| 34 | 35 | 36 |
============
Matrices :
M1 (S1+S2+S3) : 1-4-6-11-14-16-18-21-23-26-28-31-33 (13 no.)
M2 (S2+S3+S4) : 2-5-7-9-12-14-16-18-21-23-26-28-31-33 (14 no.)
M3 (S3+S4+S5) : 2-5-7-9-12-17-19-22-24-26-28-31-33 (13 no.)
M4 (S4+S5+S6) : 2-5-7-9-12-17-19-22-24-27-29-32-34-36 (14 no.)
M5 (S5+S6+S7) : 3-8-10-13-17-19-22-24-27-29-32-34-36 (13 no.)
M6 (S6+S7+S8) : 3-8-10-13-15-20-25-27-29-30-32-34-35-36 (14 no.)
M7 (S1+S7+S8) : 1-3-4-6-8-10-11-13-15-20-25-30-35 (13 no.)
M8 (S1+S2+S8) : 1-4-6-11-14-15-16-18-20-21-23-25-30-35 (14 no.)
Representation :
M1 M2 M3 M4
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 (x) | | | | 2 | | | | 2 (x) | | (x) 2 | |
--------------------- ----------(x)-------- --------------------- -----------------------
| 4 (x) | 6 | | | 5 | | | | 5 (x) | | (x) 5 | |
---------------(x)-- --(x)----------(x)-- --------------------- -----------------------
| | | | | 7 | | 9 | | 7 (x) | 9 | | 7 | (x) 9 |
--------------------- --------------------- ----------------(x)-- --(x)-----------------
| | 11 | | | | (x)12 | | | | 12 | | | | 12 |
=====(x)===== ============ ============ ==========(x)=
| | 14 | | | (x)14 | | | | | | | | | |
--(x)---------------- ----------------(x)-- ---------(x)-------- -----------------------
| 16 | | 18 | | 16(x) | 18 | | | 17 | | | | 17 | |
----------------(x)-- ---------------------- --------------------- --(x)----(x)----------
| | | 21 | | | (x)21 | | 19(x) | | | 19 | | |
--------------------- --------------------- ----------------(x)-- -----------------------
| (x)23 | | | | 23 | | | 22 | | 24 | | 22(x) | 24 |
============ =====(x)===== =(x)========= =========(x)==
| | 26 | | | | 26 | | | | 26 (x) | | | | 27 |
--(x)---(x)--------- --------------------- --------------------- -----------------------
| 28 | | | | 28 | | | | 28(x) | | | (x)29 | |
--------------------- --(x)---------------- ----------------(x)-- ----------------------
| 31(x) | 33 | | 31 | (x)33 | | 31 | | 33 | | (x)32 | |
---------------(x)-- ---------------------- --(x)---------------- -----------------(x)--
| | | | | | | | | | | | | 34(x) | 36 |
============ ============ ============ =============
M5 M6 M7 M8
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| | (x) 3 | | | | 3 | | 1 | | 3 | | 1 | | |
--------------------- ----------------(x)- --(x)-----------(x)- --(x)-----------------
| | | | | | | | | 4 | | 6 | | 4 | (x) 6 |
---------(x)--------- --------------------- ---------(x)-------- -----------------------
| | 8 | | | | 8 (x) | | | 8 | | | | | |
---------------------- --------------------- --(x)---------------- -----------------------
| 10(x) | | | 10 | | | | 10 | 11(x) | | (x)11 | |
============ =(x)======(x)= ============ =============
| 13 | | | | 13 | | 15 | | 13(x) | 15 | | | 14 (x)15 |
--(x)---------------- ---------------------- ----------------(x)-- ----------------------
| | 17(x) | | | | | | | | | | 16 | (x)18 |
--------------------- --------------------- --------------------- --(x)-----------------
| 19 | | | | (x)20 | | | | 20 (x) | | | 20 | 21 |
--(x)---------------- --------------------- ---------------------- ---------(x)----(x)--
| 22 | (x)24 | | | | | | | | | | | 23 | |
============ =(x)========= ============ =============
| | | 27 | | 25 | (x)27 | | 25 | | | | 25(x) | |
----------------(x)-- --------------------- --(x)----------(x)-- -----------------------
| | 29 | | | | 29(x)30 | | | | 30 | | | | 30 |
---------(x)--------- --------------------- --------------------- ----------------(x)--
| | 32 | | | | 32(x) | | | | | | | | |
--(x)------- ---(x)-- --(x)--------------- --------------------- ---------(x)---------
| 34 | | 36 | | 34 | 35(x)36 | | (x)35 | | | | 35 | |
============ ============ ============ =============
BET TABLE (14 no.)
-----------------
COST PROFIT
- x=1 14 36-14=12
- x=1 14 36-28=8
(28)
- x=2 28 72-56=16
(56)
- x=3 42 108-98=10
(98)
- x=5 70 180-168=12
(168)
- x=8 112 288-280=8
(280)
- x=13 182 468-462=6
(462)
- x=22 308 792-770=22
(770)
- x=36 504 1296-1274=22
(1274)
- x=58 812 2088-2086=2
(2086)
- x=95 1330 3420-3416=4
(3416)
--------------------------------- CASINO LIMIT X=100
HOW TO PLAY ?
1) – MODE 1 – intreg (whole)
- fiecare matrice joaca independent;
- matricile necastigatoare – BET TABLE;
- la SUMA PROFIT>0, toate matricile active se reseteaza pe pos. ‘’x1’’ (NEW session).
E=Engulf (apartine, cuprins in..) ; LAST= ultimul numar extras
{-Each matrix plays independently;
-The matrices that lose – BET TABLE
-At the PROFIT amount > 0, all active matrices is reset to pos. '' x1 '' (NEW session).
E = Engulf (belongs, contained in..); LAST= last number extracted}
{-Chaque matrice joue indépendamment;
-Les matrices qui perdent – BET TABLE
-Au montant de profit> 0, toutes les matrices actives sont réinitialisées pour pos. ' x1 ' (NEW session).
E - Engloutir (appartient, contenu dans..); LAST=dernier numéro extrait}
EX.(E.G.)
- |->NEW |->NEW
SPIN 1. 2. | 3. | 4. 5.
M1 - x1 x1 x1
M2 - x1 (x1) -
M3 (-) - (x1) -
M4 (-) - (x1) -
M5 (-) - x1 x1
M6 - (x1) - x1
M7 - (x1) - x1
M8 - (x1) - x1
- LAST=24 E S5 (M3,M4,M5)
- Play : 1xM1+1xM2+1xM6+1xM7+1xM8+LAST(24)=2+ZERO=2
LAST=20 E S8 (M6,M7,M8) – profit=36 (all active matrices on ‘’x1’’ – NEW)
- Play : 1xM1+1xM2+1xM3+1xM4+1xM5+LAST(20)=2+ZERO=2
LAST=9 E S4 (M2,M3,M4) – profit=73 (NEW)
2) – MODE 2 – half
- se joaca pozitiile notate cu (x)-INSIDE;
- serii de numere : se porneste cu (1xM1+ZERO=1) si se continua – secvential – cu celelalte matrici. Matricile care pierd, se tripleaza (x3,x9,x27,etc).
- mod de lucru : cicling.
- la SUMA PROFIT>0, toate matricile active (care pierd), se reseteaza pe pos.’’x1’’-NEW.
{- play the positions denoted with (x)-INSIDE;
- number series: Starts with (1xM1 + ZERO = 1) and continues – sequential – with the other matrices. The matrices that lose, triples (X3, X9, x27, etc.).
- working mode: cicling.
- at the PROFIT amount > 0, all active (losing) matrices is reset on pos. ' ' X1 ' '-NEW.}
{- jouer les positions dénotées avec (x)-INSIDE;
- série de nombres : commence par (1xM1+ZERO=1) et continue - séquentiel - avec les autres matrices. Les matrices qui perdent, triplent (x3, x9, x27, etc.).
- mode de travail : cicling.
- au montant de profit> 0, toutes les matrices actives (perdantes) sont réinitialisées sur pos. ' X1 ' '-NEW.}
EX.(E.G.)
|->NEW
|->NEW
SPIN 1. 2. 3. 4. 5. 6. 7. 8. 9. | 10.
M1 x1 (x1) (x1)
M2 - - x1 (x3)
M3 - x1 (x3)
M4 - (x1)
-----------------------------------------------------------------------------
M5 - x1 x3 (x9)
M6 - x1 x3 (x9)
M7 - x1 x3 (x1)
M8 - x1 (x1)
- Play : 1xM1+ZERO=1 ; LAST=0 (ZERO !) – profit=24
- Repeat spin 1 : LAST=9 E M1 – profit=30
- Play : 1xM2+ZERO=1 ; LAST=22
- Play : 3xM2+1xM3+ZERO=2 ; LAST=13 E M2 – profit=25
- Play : 3xM3+1xM4+ZERO=2 ; LAST=19 E M3,M4 – profit=47
- Play : 1xM5+ZERO=1 ; LAST=35
- Play : 3xM5+1xM6+ZERO=2 ; LAST=21
- Play : 9xM5+3xM6+1xM7+ZERO=4 ; LAST=18 E M5 – profit=26
- Play : 9xM6+3xM7+1xM8+ZERO=4 ; LAST=22 E M6 – profit=41
(all active matrices on pos.’’x1’’-NEW)
- Play : 1xM7+1xM8+1xM1+ZERO=1 ; LAST=4 E M1,M7,M8 – profit=61
Comentarii
Trimiteți un comentariu