ROULETTE 4
ROULETTE 4 – INSIDE 3/9 no.
***********
(DRAGU’s method)
Punct de referinta : ZERO (0) !
Dezvoltarea in GRUPURI de 3 numere (12 x 3 = 36), in sens clock - step 12 - ne indica o impartire a ruletei (pe numere), de forma :
{ Reference point: ZERO (0)!
The development in GROUPS of 3 numbers (12 x 3 = 36), in sense clock - step 12 - indicates a division of roulette (by numbers) of the form:}
{ Point de référence: ZERO (0)!
Le développement dans les GROUPES de 3 nombres (12 x 3 - 36), dans le sens horloge - step 12 - indique une division de la roulette (par nombres) de la forme :}
- {32-36-14} ; 2. {31-15-11} ; 3. {30-9-19} ; 4. {4-8-22}
- {18-21-23} ; 6. {10-29-2} ; 7. {25-5-7} ; 8. {28-17-24} ; 9. {16-12-34} ; 10. {6-33-35} ; 11. {3-27-1} ; 12. {20-26-13}
Considerand si numerele adiacente (colaterale - plus 1 si minus 1) - pe numerele de baza, rezulta 12 matrici de cate 9 numere :
{ Considering the adjacent numbers (collateral-plus 1 and minus 1)-on the base numbers, it results in 12 matrices of 9 numbers:}
{ Compte tenu des nombres adjacents (collatérales plus 1 et moins 1) sur les nombres de base, il en résulte 12 matrices de 9 nombres :}
M1 : (1) - (3) - 6 – 13 – 20 – 26 – (27) – 33 – 35 (pos. 11)
M2 : (2) - 5 - 7 – (10) – 18 – 21 – 23 – 25 – (29) (pos. 6)
M3 : (4) - (8) - 9 – 18 – 19 - 21 – (22) – 23 – 30 (pos. 4)
M4 : 2 - (5) - (7) – 10 – 17 – 24 – (25) – 28 – 29 (pos. 7)
M5 : 1 - 3 - (6) – 12 – 16 – 27 – (33) – 34 – (35) (pos. 10)
M6 : 4 - 8 - (9) – 11 – 15 – (19) – 22 – (30) – 31 (pos. 3)
M7 : 9 – (11) – 14 – (15) – 19 – 30 – (31) – 32 – 36 (pos. 2)
M8 : 6 – (12) – (16) – 17 – 24 – 28 – 33 – (34) – 35 (pos. 9)
M9 : 1 - 3 – (13) – 14 – (20) – (26) – 27 – 32 – 36 (pos. 12)
M10 : 11- 13 – (14) – 15 – 20 – 26 – 31 – (32) – (36) (pos. 1)
M11 : 5 - 7 – 12 – 16 – (17) – (24) – 25 – (28) – 34 (pos. 8)
M12 : 2 - 4 - 8 – 10 – (18) – (21) – 22 – (23) – 29 (pos. 5)
Se poate constata ca fiecare numar al ruletei are 3 aparitii. Costul total al matricilor este 9x12=108, iar castigul este 3x36=108. Deci matricile sunt echilibrate (teoria echilibrului).
Reprezentarea grafica (3 numere de baza + 2 numere adiacente) – matrici sortate :
{ It can be noted that every number of roulette has 3 appearances. The total cost of the matrices is 9x12 = 108, and the win is 3x36 = 108. So the matrices are balanced (balance theory).
Graphical representation (3 basic numbers + 2 adjacent numbers) – sorted matrices:}
{ Il est à noter que chaque numéro de roulette a 3 apparitions. Le coût total des matrices est de 9x12 à 108, et la victoire est de 3x36 à 108. Ainsi, les matrices sont équilibrées (théorie de l'équilibre).
Représentation graphique (3 nombres de base et 2 nombres adjacents) - matrices triées :}
M1 : {1-3-27} M2 : {2-10-29} M3 : {4-8-22} M4 : {5-7-25}
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | (x) 3 | | (x) 2 | | | | | | | | 2 (x) |
--(x)---------------- --------------------- --------------------- -----------------------
| | | 6 | | | 5 (x) | | 4 (x) | | | (x) 5 | |
----------------(x)-- --(x)--------------- --------------------- -----------------------
| | | | | 7 | | | | | 8 | 9 | | 7 (x) | |
--------------------- --------------------- ----------(x)---(x)-- -----------------------
| | | | | 10(x) | | | | | | | 10 | | |
============ ============ ============ =(x)==========
| 13(x) | | | | | | | | | | | | | |
--------------------- ---------------(x)-- ---------------------- ---------(x)----------
| | | | | | | 18 | | | (x) 18 | | | 17 | |
---------(x)--------- --------------------- --(x)--------------- -----------------------
| | 20 | | | | | 21 | | 19 | (x) 21 | | | | |
--------------------- ----------------(x)-- --------------------- ----------------(x)---
| | | | | (x) 23 | | | 22 | 23(x) | | | | 24 |
=========(x)= ============ =(x)========= =(x)==========
| | 26 | 27 | | 25 | | | | | | | | 25 | | |
---------(x)-------- --(x)---(x)---------- --------------------- -----------------------
| | | | | | 29 | | | | | 30 | | 28 | 29 (x) |
----------------(x)-- --------------------- ----------------(x)-- --(x)-----------------
| | | 33 | | | | | | | | | | | | |
--------------------- --------------------- ---------------------- -----------------------
| (x)35 | | | | | | | | | | | | | |
============ ============ ============ =============
M5 : {6-33-35} M6 : {9-19-30} M7 : {11-15-31} M8 : {12-16-34}
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | (x) 3 | | | | | | | | | | | | |
--(x)---------------- ---------------------- --------------------- -----------------------
| | | 6 | | 4 | | | | | | | | | (x) 6 |
----------------(x)-- --(x)----(x)---(x)-- --------------------- ----------------------
| | | | | | 8 | 9 | | | (x) 9 | | | | |
--------------------- ---------------------- ---------------------- ----------------------
| | | 12 | | (x) 11 | | | | 11(x) | | | (x) 12 |
=========(x)= ============ ============ =============
| | | | | | (x) 15 | | (x)14 | 15 | | | | |
--------------------- --------------------- -----------------(x)-- -----------------------
| 16(x) | | | | | | | | | | | 16 | 17 | |
--------------------- --------------------- --------------------- --(x)- --(x)----------
| | | | | 19(x) | | | 19 | | | | | | |
--------------------- --------------------- --(x)---------------- -----------------------
| | | | | 22(x) | | | | | | | | (x)24 |
============ ============ ============ =============
| | (x) 27 | | | | | | | | | | | | |
--------------------- --------------------- ----------------(x)-- --(x)-----------------
| | | | | | (x)30 | | | | 30 | | 28 | | |
--------------------- --------------------- ---------------------- -----------------------
| | | 33 | | 31(x) | | | 31 | 32 | | | | (x) 33 |
--(x)----(x)---(x)-- --------------------- --(x)---(x)----(x)-- --(x)------------------
| 34 | 35 | | | | | | | | | 36 | | 34 | 35(x) |
============ ============ ============ =============
M9 : {13-20-26} M10 : {14-32-36} M11 : {17-24-28} M12 : {18-21-23}
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1(x) | 3 | | | | | | | | | | | 2 | |
----------------(x)-- --------------------- ---------------------- --(x)----(x)---------
| | | | | | | | | | 5 | | | 4 | | |
--------------------- --------------------- ---------(x)-------- -----------------------
| | | | | | | | | 7 | | | | | 8 (x) |
--------------------- ---------(x)--------- --(x)----------(x)-- --(x)------------------
| | | | | | 11 | | | | | 12 | | 10 | | |
=(x)========= =========(x)= ============ =============
| 13 | 14(x) | | 13 | 14 | 15 | | | | | | | | |
--------------------- --(x)---(x)--------- --(x)---------------- -----------------------
| | | | | | | | | 16 | 17 (x) | | | (x)18 |
--------------------- --------------------- --------------------- -----------------------
| (x)20 | | | | 20(x) | | | | | | | (x)21 |
--------------------- --------------------- ---------------------- -----------------------
| | | | | | | | | | | 24 | | 22 | 23 | |
=====(x)===== ============ =========(x)= =(x)==(x)======
| | 26 | 27 | | (x) 26 | | | 25(x) | | | | | |
----------------(x)-- --------------------- --------------------- ----------------------
| | | | | | | | | 28(x) | | | | 29 | |
--------------------- --(x)---(x)-------- --------------------- ---------(x)----------
| | 32(x) | | 31 | 32 | | | | | | | | | |
--------------------- ----------------(x)-- --------------------- ----------------------
| | (x) 36 | | | | 36 | | 34(x) | | | | | |
============ ============ ============ =============
Sunt posibile 2 moduri de joc :
1)- mod 1 : - intreg, conform pozitiilor din matrici. Fiecare matrice lucreaza independent, conform BET TABLE (9 no.).
2) – mod 2 : - jumatate, conform pozitiilor notate cu (x)-INSIDE . Matricile care pierd, se dubleaza.
{ 2 game modes are possible:
1) - mode 1: - whole, according to the positions in the matrices. Each matrix works independently according to BET TABLE (9 no.).
2) – mode 2: - half, according to the positions denoted with (x)-INSIDE. The matrices that loses, doubles.}
{ 2 modes de jeu sont possibles :
1) - mode 1: - entier, selon les positions dans les matrices. Chaque matrice fonctionne indépendamment selon BET TABLE (9 no.).
2) - mode 2: - moitié, selon les positions indiquées avec (x)-INSIDE. Les matrices qui perd, double.}
1) – MODE 1 - whole
BET TABLE (9 no.)
----------------
(x = no. in matrices)
BET COST PROFIT
- x= 1 9 36- 9=27
- x= 1 9 36-18=18
(18)
- x= 1 9 36-27= 9
(27)
- x= 2 18 72-45=27
(45)
- x= 2 18 72-63= 9
(63)
- x= 3 27 108-90=18
(90)
- x= 4 36 144-126=18
- x= 5 45 180-171= 9
(171)
- x= 7 63 252-234=18
(234)
- x= 9 81 324-315= 9
( 315)
- x=12 108 432-423= 9
(423)
- x=16 144 576-567= 9
(567)
- x=22 198 792-765=27
(765)
- x=29 261 1044-1026=18
(1026)
- x=39 351 1404-1377=27
(1377)
- x=52 468 1872-1845=27
(1845)
- x=69 621 2484-2466=18
(2466)
- x=92 828 3312-3294=18
(3294)
---------------------------------------------------------- CASINO LIMIT X= 100
- x=123 1107 4428-4401=27
(4401)
- x=164 1476 5904-5877=27
(5877)
HOW TO PLAY ?
- jucati numai jetoane mici (ex. 10 bani, 1 cent, etc). JUCATI RESPONSABIL ! Metodele prezentate sunt ‘’extra-income’’, nu sunt metode de IMBOGATIRE !
- fiecare matrice joaca independent, conform BET TABLE;
{- play only small tokens (e.g. 10 money, 1 cent, etc.). PLAY RESPONSIBLY! The methods presented are ' ' extra-income ' ', there are no methods to enrich!
- each matrix plays independently, according to BET TABLE;}
{- jouer uniquement les petits jetons (p. ex. 10 argent, 1 cent, etc.). PLAY RESPONSIBLY! Les méthodes présentées sont ' extra-revenu ', il n'y a pas de méthodes à enrichir!
-Chaque matrice joue indépendamment, selon BET TABLE;}
- pe ultimul numar extras, vor apare castigatoare 3 matrici : una – pe numarul de baza, celelalte doua – pe numere colaterale . Deci, probabilitatea este de 25%(3/12). Aceasta inseamna ca, pentru a asigura o probabilitate de 75%, modul de joc trebuie sa fie ‘’martingale’’ (matrici opuse !) ;
{-On the last extracted number, the winners will appear 3 matrices: one – on the base number, the other two – on collateral numbers. So the probability is 25%(3/12). This means that to ensure a probability of 75%, the gameplay must be ' ' martingale ' ' (opposite matrices!);}
{-Sur le dernier numéro extrait, les gagnants apparaîtront 3 matrices: une sur le nombre de base, les deux autres - sur les numéros collatéraux. Donc, la probabilité est de 25%(3/12). Cela signifie que pour assurer une probabilité de 75%, le gameplay doit être ' martingale ' (en face des matrices!);}
- daca SUMA PROFIT >0, toate matricile active (necastigatoare) se reseteaza pe ‘’x1’’ (pos.1-BET TABLE) si se incepe o noua sesiune (NEW).
- atentie la ZERO : bet(18-36) -> ZERO=1 ; bet(36-72) -> ZERO=2, etc
- la un profit care vi se pare rezonabil, folositi metoda SCALPING (taie motzul si fugi !)
{- if the PROFIT amount > 0, all the active (loses) matrices is reset to ' x1 ' (pos. 1-BET TABLE) and a new session begins (NEW).
- attention to ZERO: Bet (18-36)-> ZERO = 1; Bet (36-72)-> ZERO = 2, etc.
- at a profit that you find reasonable, use the SCALPING method (cut the motcheon and run!)}
{- si le montant du PROFIT est de> 0, toutes les matrices actives (perds) sont réinitialisées à ' x1 ' ' (pos. 1-BET TABLE) et une nouvelle session commence (NEW).
- attention à ZERO: Bet (18-36)-> ZERO= 1; Pari (36-72)->ZERO= 2, etc.
- a un profit que vous trouvez raisonnable, utilisez la méthode SCALPING (couper le motcheon et courir!)}
RECOMANDARE : la profit de 30-40 x (bet=1), parasiti jocul, asteptati si reveniti cu o noua sesiune de lucru.
NOTA : (-), (x1) – numar extras(LAST) ; E = engulf (apartine, cuprins in…)
{ RECOMMENDATION: At profit of 30-40 x (bet = 1), leave the game, wait and return with a new work session.
NOTE: (-), (x1) – Number extracted (LAST); E = Engulf (belongs, contained in...)}
{ RECOMMANDATION: Au profit de 30-40 x (pari 1), quitter le jeu, attendre et revenir avec une nouvelle session de travail.
REMARQUE: (-), (x1) - nombre extrait (LAST); E - Engulf (appartient, contenu dans...)}
EX.(E.G.)
|->NEW
SPIN 1. 2. | 3. | 4. 5. 6. 7. 8. 9. 10.
M1 (-) - | (x1) | -
M2 - x1 | x1 | x1
M3 - (x1) | - | x1
M4 - x1 | x1 | x1
M5 (-) - | (x1) | -
M6 - (x1) | - | x1
M7 - x1 | x1 | x1
M8 - x1 | x1 | x1
M9 (-) - | (x1) | -
M10 - x1 | x1 | x1
M11 - x1 | x1 | x1
M12 - (x1) | - | x1
|-> NEW
- LAST=1 E M1, M5, M9
- Play : 1xM2 + 1xM3 + 1xM4 + 1xM6 + 1xM7 + 1xM8 + 1xM10 + 1xM11 + 1xM12 + LAST(1)=3 + ZERO=3
LAST=4 E M3, M6, M12 (profit=21 – NEW – all active matrices on pos.1(x1)
- Play : 1xM1 + 1xM2 + 1xM4 + 1xM5 + 1xM7 + 1xM8 + 1xM9 + 1xM10 + 1xM11 + LAST(4)=3 + ZERO=3
LAST=1 E M1, M5, M9 (profit=43 – NEW !)
2) – MODE 2 - half
Reformulare matrici : {matrices reforms:} {réformes des matrices :}
M1 : M2 : M3 : M4 :
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2(x) 3 | | 1 (x) 2 | | | | | | | | 2 (x) 3 |
--(x)---------------- ---------------------- --------------------- -----------------------
| 4 | | 6 | | 4 | 5 (x) 6 | | 4 (x) 5 | | | 4 (x) 5 | |
----------------(x)-- --(x)---------------- --------------------- ----------------------
| | | 9 | | 7 | | | | | 8 | 9 | | 7 (x) 8 | |
--------------------- ---------------------- ---------(x)----(x)-- ----------------------
| | | | | 10(x) 11 | | | | 11 | 12 | | 10 | | |
============ ============ ============ =(x)==========
| 13(x)14 | | | | | 15 | | | | | | 13 | 14 | |
--------------------- ----------------(x)-- ---------------------- ----------(x)----------
| | 17 | | | | | 18 | | 16 | 17 (x) 18 | | | 17 | |
---------(x)--------- --------------------- --(x)---------------- -----------------------
| | 20 | | | | | 21 | | 19 | 20 (x) 21 | | | | 21 |
--------------------- ----------------(x)-- ---------------------- -----------------(x)--
| | | 24 | | 22(x) 23 | 24 | | 22 | 23(x) 24 | | 22 | | 24 |
=========(x)= ============ =(x)========= =(x)==========
| | 26 | 27 | | 25 | 26 | | | 25 | | | | 25 | | |
---------(x)-------- --(x)----(x)--------- --------------------- -----------------------
| | 29 | 30 | | 28 | 29 | | | | | 30 | | 28 | 29 (x) 30 |
----------------(x)-- ---------------------- -----------------(x)- --(x)-----------------
| | | 33 | | | | | | | | 33 | | 31 | | |
--------------------- --------------------- --------------------- -----------------------
| 34(x)35 | | | | | | | | | | | | | |
============ ============ ============ =============
M5 : M6 : M7 : M8 :
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1 | 2(x) 3 | | | | | | | | | | | | |
--(x)---------------- --------------------- --------------------- -----------------------
| 4 | | 6 | | 4 | 5 | 6 | | | | | | | 5 (x) 6 |
--------- -------(x)-- --(x)---(x)---(x)-- ----------------------- ----------------------
| | | 9 | | 7 | 8 | 9 | | | 8 (x) 9 | | | | |
--------------------- --------------------- ---------------------- -----------------------
| | | 12 | | 10(x) 11 | | | | 11(x)12 | | | 11 (x) 12 |
=========(x)= ============ ============ =============
| | | 15 | | | 14(x) 15 | | 13(x)14 | 15 | | | | |
--------------------- ---------------------- -----------------(x)-- -----------------------
| 16(x) 17 | | | | | | | | | 18 | | 16 | 17 | |
--------------------- --------------------- ---------------------- --(x)----(x)----------
| | | | | 19(x)20 | | | 19 | | | | 19 | 20 | |
--------------------- --------------------- --(x)---------------- -----------------------
| | | | | 22(x)23 | | | 22 | | | | | 23 (x)24 |
============ ============ ============ =============
| | 26( x) 27 | | | | | | | | 27 | | 25 | | |
--------------------- --------------------- ----------------(x)-- --(x)-----------------
| | | | | | 29(x)30 | | | | 30 | | 28 | | |
--------------------- --------------------- ---------------------- -----------------------
| 31 | 32 | 33 | | 31(x)32 | | | 31 | 32 | 33 | | 31 | 32 (x) 33 |
-(x)----(x)----(x)-- --- ------------------ --(x)---(x)----(x)-- --(x)------------------
| 34 | 35 | 36 | | | | | | 34 | 35 | 36 | | 34 | 35 (x) 36 |
============ ============ ============ =============
M9 : M10 : M11 : M12 :
ZERO ZERO ZERO ZERO
0 0 0 0
============ ============ ============ =============
| 1(x) 2 | 3 | | | | | | | | | | 1 | 2 | |
----------------(x)-- ---------------------- --------------------- --(x)----(x)----------
| | | 6 | | | | | | | 5 | | | 4 | 5 | |
--------------------- --------------------- --------(x)--------- -----------------------
| | | | | | 8 | | | 7 | 8 | 9 | | 7 | 8 (x) 9 |
--------------------- ---------(x)--------- --(x)-----------(x)-- --(x)-----------------
| 10 | | | | | 11 | 12 | | 10 | | 12 | | 10 | | |
=(x)========= =========(x)= ============ =============
| 13 | 14(x)15 | | 13 | 14 | 15 | | 13 | | | | | | |
--------------------- --(x)---(x)--------- --(x)---------------- -----------------------
| | | | | 16 | 17 | | | 16 | 17 (x)18 | | | 17 (x)18 |
--------------------- --------------------- --------------------- -----------------------
| 19(x)20 | | | | 20(x)21 | | | | | | | 20 (x)21 |
--------------------- ---------------------- ---------------------- ----------------------
| | 23 | | | | | | | | | 24 | | 22 | 23 | |
=====(x)===== ============ =========(x)= =(x)==(x)======
| | 26 | 27 | | 25(x) 26 | | | 25(x)26 | 27 | | 25 | 26 | |
----------------(x)-- --------------------- --------------------- -----------------------
| | | 30 | | 28 | 29 | | | 28(x)29 | | | | 29 | |
--------------------- --(x)---(x)--------- --------------------- ----------(x)----------
| | 32(x) 33 | | 31 | 32 | 33 | | | | | | | 32 | |
--------------------- ----------------(x)-- --------------------- -----------------------
| | 35(x) 36 | | | | 36 | | 34(x)35 | | | | | |
============ ============ ============ =============
HOW TO PLAY ?
- se joaca pozitiile notate cu (x)-INSIDE ;
- toate matricile lucreaza independent. Matricile necastigatoare, se dubleaza ;
- la SUMA PROFIT>0, toate matricile active (necastigatoare), se reseteaza pe pos.’’x1’’
- sunt posibile 2 variante :
- a) – var.1 : - se joaca pe serii de numere. Se incepe cu (1xM1) si se continua – secvential – cu celelate matrici. Modul de joc : cicling !
- b) – var. 2 : - se joaca ‘’martingale’’ (matrici opuse).
- la bet>12, se calculeaza si se adauga numarul ZERO.
E=Engulf (apartine, cuprins in..) ; LAST=ultimul numar extras.
{- play the positions denoted with (x)-INSIDE;
- all the matrices works independently. The non-ageing matricile, doubles;
- at the PROFIT amount > 0, all active (loses) matrices, is reset to pos. ' ' X1 ' '
- 2 variants are possible:
- a) – var. 1: - is played on series of numbers. It starts with (1xM1) and continues – sequentially – with the other matrices. Gameplay: Cicling!
- b) – var. 2: - play ' ' martingale ' ' (opposite matrices).
- at BET > 12, calculate and add the number ZERO.
E = Engulf (belongs, contained in..); LAST = last number extracted.}
{- jouer les positions dénotées avec (x)-INSIDE;
- toutes les matrices fonctionnent indépendamment. Les matrices qui perds, double;
- au montant du PROFIT> 0, toutes les matrices actives (qui perds) sont réinitialisées pour pos. ' ' X1 ' '
- 2 variantes sont possibles :
- a) - var. 1: - est joué sur une série de numéros. Il commence par (1xM1) et se poursuit - séquentiellement - avec les autres matrices. Gameplay: Cicling!
- b) - var. 2: - play ' martingale ' ' (en face des matrices).
- a BET> 12, calculez et ajoutez le nombre ZERO.
E - Engloutir (appartient, contenu dans..); LAST=dernier numéro extrait.}
EX.(E.G.)
- a) – var.1
- (E.G.) – var. 1
SPIN 1. 2. 3. 4. 5. 6. 7. 8.
M1 x1 (x2) -
M2 - (x1) -
M3 - - x1 (x2) -
M4 - x1 (x2) -
------------------------------------------------------
M5 - x1 (x2) -
M6 - (x1) -
M7 - x1
M8 -
------------------------------------------------------
- Play : 1xM1 ; LAST=25
- Play : 2xM1+1xM2+ZERO=1 ; LAST=4 E M1,M2 – profit=17
- Play : 1xM3 ; LAST=28
- Play : 2xM3+1xM4+ZERO=1 ; LAST=19 E M3
- Play : 2xM4+1xM5+ZERO=1 ; LAST=28 E M4 – profit=24
- Play : 2xM5+1xM6+ZERO=1 ; LAST=15 E M5,M6 – profit=50
- b) – var.2
- – var. 2 |->NEW
SPIN 1. 2. 3. 4. | 5.
M1 - x1 (x2) (-) -
M2 - (x1) - (x1) -
M3 (-) (-) - x1 x1
M4 - (x1) (-) (-) -
------------------------------------------------
M5 (-) - (x1) - x1
M6 - x1 x2 (x4) -
M7 (-) - x1 x2 x1
M8 (-) - x1 x2 x1
------------------------------------------------
M9 - x1 (x2) - x1
M10 (-) (-) - (x1) -
M11 (-) - x1 (x2) -
M12 - (x1) - (x1) -
------------------------------------------------
- LAST=12 E M3,M5,M7,M8,M10,M11
- Play : 1xM1+1xM2+1xM4+1xM6+1xM9+1xM12+ZERO=2
LAST=21 E M2,M3,M4,M10,M12
- Play : 2xM1+1xM5+2xM6+1xM7+1xM8+2xM9+1xM11+ZERO=3
LAST=3 E M1,M4,M5,M9
- Play : 1xM2+1xM3+4xM6+2xM7+2xM8+1xM10+2xM11+1xM12+ZERO=4
LAST=29 E M1,M2,M4,M6,M10,M11,M12 – profit=29
(all active matrices on pos.’’x1’’-NEW session)
Comentarii
Trimiteți un comentariu