ROULETTE 7
ROULETTE 7 – INSIDE
***********
(DRAGU’s method)
Dezvoltarea in grupuri de 4 numere (4 x 9 = 36), in sens trigonometric (invers clock), - cu step 9 - ne indica o impartire a ruletei de forma :
{ Development in groups of 4 numbers (4 x 9 = 36), in a trigonometric sense (inversely clock), - with step 9 - we indicate a division of the roulette form:}
{ Développement en groupes de 4 nombres (4 x 9 = 36), dans un sens trigonométrique (horloge inversement), avec step 9 - nous indiquons une division de la forme de roulette:}
1. {1-11–21-28} ; 2. {7-33-36-4} ; 3. {19-29-16-13}
4. {27-15-18-24} ; 5. {5-6-32-22} ; 6. {9-10-34-26} ;
7. {3-31-23-17} ; 8. {25-35-14-8} ; 9. {30-2-12-20}
4. {27-15-18-24} ; 5. {5-6-32-22} ; 6. {9-10-34-26} ;
7. {3-31-23-17} ; 8. {25-35-14-8} ; 9. {30-2-12-20}
VAR. I
--------
Considerand si numerele adiacente (colaterale), de plus 1 si minus 1 - pe numerele de baza, rezulta 9 matrici de cate 12 numere (sortate) :
{ Considering the adjacent numbers (collateral), plus 1 and minus 1 - on the base numbers, it results in 9 matrices of 12 numbers (sorted):}
{ Compte tenu des nombres adjacents (collatéral), plus 1 et moins 1 - sur les numéros de base, il en résulte 9 matrices de 12 numéros (triés):}
M1 : (1) – 2 – 4 – 7 – (11) – 12 – 20 – (21) – (28) – 30 – 33 – 36 (pos.1)
M2 : 1 – (2) – 8 – 11 – (12) – 14 – (20) – 21 – 25 – 28 – (30) – 35 (pos.9)
M3 : (3) – 8 – 9 – 10 – 14 – (17) – (23) – 25 – 26 – (31) – 34 – 35 (pos.7)
M4 : 1 – (4) – (7) – 11 – 13 – 16 – 19 – 21 -28 – 29 – (33) – (36) (pos.2)
M5 : (5) – (6) – 9 – 10 – 15 – 18 – (22) – 24 – 26 – 27 – (32) – 34 (pos.5)
M6 : 2 – 3 – (8) – 12 – (14) – 17 – 20 – 23 –(25) – 30 – 31 – (35) (pos.8)
M7 : 3 – 5 – 6 – (9) – (10) – 17 – 22 – 23 – (26) – 31 – 32 – (34) (pos.6)
M8 : 4 – 7 – (13) – 15 – (16) – 18 – (19) – 24 – 27 – (29) – 33 – 36 (pos.3)
M9 : 5 – 6 – 13 – (15) – 16 – (18) – 19 – 22 – (24) – (27) – 29 – 32 (pos.4)
Se poate constata ca fiecare numar al ruletei are 3 aparitii. Costul total al matricilor este 9x12=108, iar castigul este 3x36=108. Deci matricile sunt echilibrate (teoria echilibrului).
{ It can be noted that every number of roulette has 3 appearances. The total cost of the matrices is 9x12 = 108, and the win is 3x36 = 108. So the matrices are balanced (balance theory).}
{ Il est à noter que chaque numéro de roulette a 3 apparitions. Le coût total des matrices est de 9x12 = 108, et la victoire est de 3x36 = 108. Ainsi, les matrices sont équilibrées (théorie de l'équilibre).}
BET TABLE (12 no.)
----------------
(x = no. in matrices)
BET COST PROFIT
- x= 1 12 36-12=24
- x= 1 12 36-24=12
(24)
- x= 2 24 72-48=24
(48)
- x= 3 36 108-84=24
(84)
- x= 4 48 144-132=12
(132)
- x= 6 72 216-204=12
(204)
- x= 9 108 324-312=12
(312)
- x= 14 168 504-480=24
(480)
- x= 21 252 756-732=24
(732)
- x= 31 372 1116-1104=12
(1104)
- x= 47 564 1692-1668=24
(1668)
- x= 70 840 2520-2508=12
(2508)
----------------------------------------------------------- CASINO LIMIT X=100
- x=105 1260 3780-3768=12
(3768)
HOW TO PLAY ?
1) – MODE 1
- jucati numai jetoane mici (ex. 10 bani, 1 cent, etc). JUCATI RESPONSABIL ! Metodele prezentate sunt ‘’extra-income’’, nu sunt metode de IMBOGATIRE !
- fiecare matrice joaca independent, conform BET TABLE;
- pe ultimul numar extras, vor apare castigatoare 3 matrici : una – pe numarul de baza, celelalte doua – pe numere colaterale . Deci, probabilitatea este de 33%(3/9). Aceasta inseamna ca, pentru a asigura o probabilitate de 66%, modul de joc trebuie sa fie ‘’martingale’’ (matrici opuse !) ;
{-Play only small tokens (e.g. 10 Bani, 1 cent, etc.). PLAY RESPONSIBLY! The methods presented are ' ' extra-income ' ', there are no methods to enrich!
-Each matrix plays independently, according to BET TABLE;
-On the last extracted number, the winners will appear 3 matrices: one – On the base number, the other two – on collateral numbers. So the probability is 33%(3/9). This means that to ensure a probability of 66%, the gameplay must be ' ' martingale ' ' (opposite matrices!);}
{-Jouer uniquement les petits jetons (p. ex. 10 Bani, 1 cent, etc.). PLAY RESPONSIBLY! Les méthodes présentées sont ' extra-revenu ', il n'y a pas de méthodes à enrichir!
-Chaque matrice joue indépendamment, selon BET TABLE;
-Sur le dernier numéro extrait, les gagnants apparaîtront 3 matrices: une sur le nombre de base, les deux autres - sur les numéros collatéraux. Donc, la probabilité est de 33%(3/9). Cela signifie que pour assurer une probabilité de 66%, le gameplay doit être ' martingale ' (en face des matrices!);}
- pentru ca softul casinoului are ‘’prostul’’ obicei de a dubla, tripla - ultimul numar (LAST), trebuie jucat si acest numar ;
- matricile “castigatoare” (dar active !), se initializeaza pe pos.1 (x=1), celelalte urmeaza pozitia din TABLE.
- daca SUMA PROFIT >0, toate matricile active se aduc pe pos.1 (x1) si se incepe o noua sesiune (NEW).
- la un profit care vi se pare rezonabil, folositi metoda SCALPING (taie motul si fugi !)
{-Because the casino software has the ' ' Fool ' ' habit of double, triple-The last number (LAST), the number must be played;
-the "winning" matrices (but active!), initializes on pos. 1 (x = 1), the other follows the position in TABLE.
-If the PROFIT amount > 0, all active matrices are brought to pos. 1 (x1) and start a new session (NEW).
-At a profit that you find reasonable, use the Scalping method (cut the wattle and run!)}
{-Parce que le logiciel de casino a l'habitude ' ' Fool ' ' de double, triple -le dernier numéro (LAST), le nombre doit être joué;
-les matrices "gagnantes" (mais actives!), paraphé sur pos. 1 (x=1), l'autre suit la position en TABLE.
-Si le montant de profit > 0, toutes les matrices actives sont apportées à pos. 1 (x1) et commencent une nouvelle session (NEW).
-À un profit que vous trouvez raisonnable, utilisez la méthode Scalping (couper le wattle et courir!)}
RECOMANDARE : la profit de 30-40 x (bet=1), parasiti jocul, asteptati si reveniti cu o noua sesiune de lucru.
NOTA : (-), (x1) – numar extras(LAST) ; E = engulf (apartine, cuprins in…)
{ RECOMMENDATION: At profit of 30-40 x (bet = 1), leave the game, wait and return with a new work session.
NOTE: (-), (x1) – number extracted (LAST); E = Engulf (belongs, contained in...)}
{ RECOMMANDATION: Au profit de 30-40 x (bet=1), quitter le jeu, attendre et revenir avec une nouvelle session de travail.
REMARQUE: (-), (x1) - nombre extrait (LAST); E - Engulf (appartient, contenu dans...)}
EX.(E.G.)
| ->NEW | ->NEW
SPIN 1. 2. | 3. 4. 5. | 6. 7. 8.
M1 (-) - | x1 x1 (x2) | (-) - x1
M2 - x1 | x1 x1 (x2) | - (x1) -
M3 - x1 | (x1) (-) - | x1 (x1) -
M4 (-) - | x1 x1 (x2) | (-) - x1
M5 - (x1) | (-) - x1 | x1 x1 (x2)
M6 - x1 | x1 (x1) - | x1 (x1) -
M7 - (x1) | (-) (-) - | x1 x1 (x2)
M8 (-) - | x1 x1 x2 | (x1) - x1
M9 - (x1) | - x1 x1 | x1 x1 (x2)
- LAST=33 E M1, M4, M8
- Play : 1xM2 + 1xM3 + 1xM5 + 1xM6 + 1xM7 + 1xM9 + LAST(33)=2 + ZERO=2
LAST=6 E M5, M7, M9 - profit=32 (NEW – all active matr. on pos.1(x1) ).
- Play : 1xM1 + 1xM2 + 1xM3 + 1xM4 + 1xM6 + 1xM8 + LAST(6)=2 + ZERO=2
LAST=34 E M3, M5, M7
- Play : 1xM1 + 1xM2 + 1xM4 + 1xM6 + 1xM8 + 1xM9 + LAST(34)=2 + ZERO=2
LAST=23 E M3, M6, M7
- Play : 2xM1 + 2xM2 + 2xM4 + 1xM5 + 2xM8 + 1xM9 + LAST(23)=4 + ZERO=4
LAST=1 E M1, M2, M4 - profit=40 (NEW – all active matr. on pos.1)
- Play : 1xM3 + 1xM5 + 1xM6 + 1xM7 + 1xM8 + 1xM9 + LAST(1)=2 + ZERO=2
LAST=4 E M1, M4, M8
- Play : 1xM2 + 1xM3 + 1xM5 + 1xM6 + 1xM7 + 1xM9 + LAST(4)=2 + ZERO=2
LAST=8 E M2, M3, M6
- Play : 1xM1 + 1xM4 + 2xM5 + 2xM7 + 1xM8 + 2xM9 + LAST(8)=3 + ZERO=3
LAST=32 E M5, M7, M9 - PROFIT=134
2) – MODE 2
Matrici extinse : {expanded matrices:} {matrices élargies :}
M1 M2 M3
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1(x) 2 | | | 1 | 2 | | | | | 3 |
---------------------- --(x)---(x)--------- ----------------(x)--
| 4 | | | | 4 | 5 | | | | | 6 |
--(x)---------------- --------------------- ---------------------
| 7 | | | | 7 (x) 8 | | | 7 | 8 (x)9 |
---------------------- --------------------- --(x)----------------
| | 11(x) 12 | | | 11 | 12 | | 10 | | |
============ =====(x)==(x)= ============
| | | | | | 14 | 15 | | 13(x)14 | |
---------------------- --------------------- ---------------------
| | 17 | 18 | | | | | | | 17 (x)18 |
---------(x)---(x)-- --------------------- ---------------------
| | 20 | 21 | | | 20(x)21 | | | | |
--------------------- --------------------- ---------------------
| | | | | | | | | | 23 (x)24 |
============ ============ ============
| | | | | 25 | | | | 25(x)26 | |
--------------------- --(x)---------------- ---------------------
| 28 | 29(x)30 | | 28 | | 30 | | | | |
--(x)--------------- ----------------(x)-- ---------------------
| 31 | 32(x)33 | | | 32 | 33 | | 31(x)32 | |
--------------------- ---------(x)--------- ---------------------
| | 35(x)36 | | | 35 | | | 34(x)35 | |
============ ============ ============
M4 M5 M6
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 | | | | | | | | | 2 (x) 3 |
--(x)---------------- ---------------------- ---------------------
| 4 | | | | 4 (x) 5 | 6 | | | | |
--------------------- ----------------(x)-- ---------------------
| 7 | | | | | | 9 | | | 8 | |
--(x)---------------- ---------------------- ---------(x)--------
| 10 | 11(x)12 | | 10 | | | | | 11 | 12 |
============ =(x)========= =========(x)=
| 13(x)14 | | | 13 | | 15 | | | 14 | 15 |
--------------------- ---------------(x)-- ---------(x)---------
| 16(x)17 | | | | | 18 | | | 17 | |
--------------------- --------------------- ---------------------
| 19(x)20 | 21 | | | | | | | 20 | |
----------------(x)-- --------------------- ---------(x)---------
| | | 24 | | 22 | 23(x)24 | | 22 | 23 | |
============ =(x)========= =(x)=========
| | | | | 25 | 26(x)27 | | 25 | | 27 |
--------------------- --------------------- ----------------(x)--
| 28(x)29 | | | | 29 | | | 28 | | 30 |
--------------------- ---------(x)--------- --(x)----------------
| | | 33 | | 31 | 32 | | | 31 | 32 | |
----------------(x)-- ---(x)--------------- ---------(x)---------
| | | 36 | | 34 | | | | | 35 | |
============ ============ ============
M7 M8 M9
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | 2 (x) 3 | | | | | | | 2 | 3 |
--------------------- --------------------- ---------(x)----(x)--
| | 5 | 6 | | 4 (x) 5 | | | | 5 | 6 |
---------(x)---(x)-- ---------------------- ---------------------
| | 8 | 9 | | 7 (x) 8 | | | | | |
--------------------- --------------------- ---------------------
| 10(x)11 | | | 10 | | 12 | | | | |
============ =(x)======(x)= ============
| | | | | 13 | | 15 | | 13 | | 15 |
--------------------- --------------------- --(x)-----------(x)--
| | 17 | | | 16 | | 18 | | 16 | | 18 |
---------(x)--------- --(x)----------(x)-- ---------------------
| | 20 | | | 19 | | 21 | | 19 | | 21 |
---------------------- --------------------- --(x)-----------(x)--
| 22(x)23 | | | | | 24 | | 22 | | 24 |
============ =========(x)= ============
| | 26 | | | | | 27 | | | 26 | 27 |
---------(x)--------- ---------------------- ---------(x)----(x)--
| | 29 | | | | 29 | | | | 29 | 30 |
--------------------- ---------(x)--------- ----------------------
| 31 | 32(x)33 | | | 32 | 33 | | | 32 | |
--(x)---------------- ----------------(x)-- ---------(x)---------
| 34 | | | | | | 36 | | | 35 | |
============ ============ ============
HOW TO PLAY ?
- mod de joc : ‘’martingale’’ (matrici opuse);
- sunt posibile 2 variante :
- a) – var. a : - intreg, pe numerele corespunzatoare matricilor extinse ;
- b) – var. b : - jumatate, conform pozitiilor notate cu (x)-INSIDE.
- matricile care pierd, se dubleaza;
- la SUMA PROFIT>0, matricile active (necastigatoare), se reseteaza pe pos.’’x1’’-NEW)
-E=Engulf (apartine, cuprins in..) ; LAST= ultimul no.
{- game mode: ' ' martingale ' ' (opposite matrices);
- 2 variants are possible:
- a) – var. a: - integer, on the numbers corresponding to extended matrices;
- b) – var. b: - half, according to the positions denoted by (x)-INSIDE.
- the matrices that loses, doubles;
- at the PROFIT amount > 0, the active (loses) matrices, is reset to pos. ' ' X1 ' '-NEW)
-E = Engulf (belongs, contained in..); LAST = final no.}
{- mode jeu: ' martingale ' '(en face des matrices);
- 2 variantes sont possibles :
- a) - var. a: - intégreur, sur les nombres correspondant aux matrices étendues;
- b) - var. b: - moitié, selon les positions dénotées par (x)-INSIDE.
- les matrices qui perdent, doublent;
- au montant de profit> 0, les matrices actives (qui perds) sont réinitialisées pour pos. ' X1 ' '-NEW)
-E - Engloutir (appartient, contenu dans..); LAST = final no.}
EX.(E.G.)
– var. b |->NEW |->NEW
SPIN 1. 2. 3 . | 4. 5. | 6.
M1 (-) (-) - x1 (x2) -
M2 - (x1) - (x1) (-) -
M3 (-) - (x1) (-) (-) -
------------------------------------------------------------
M4 - (x1) - x1 (x2) -
M5 (-) (-) (-) (-) - x1
M6 - x1 x2 (x1) - x1
------------------------------------------------------------
M7 - x1 (x2) - x1 x1
M8 (-) (-) - x1 (x2) -
M9 (-) - (x1) - x1 x1
- LAST=18 E M1,M3,M5,M8,M9
- Play : 1xM2+1xM4+1xM6+1xM7+LAST(18)=1+ZERO=1
LAST=4 E M1,M2,M4,M5,M8
- Play : 1xM3+2xM6+2xM7+1xM9+LAST(4)=2+ZERO=2
LAST=26 E M3,M5,M7,M9 - profit=12 (all active matrices on pos.’’x1’’- NEW)
- Play : 1xM1+1xM2+1xM4+1xM6+1xM8+LAST(26)=2+ZERO=2
LAST=25 E M2,M3,M5,M6
- Play : 2xM1+2xM4+1xM7+2xM8+1xM9+LAST(25)=2+ZERO=2
LAST=7 E M1,M2,M3,M4,M8 - profit=31 (NEW)
VAR. II
---------
Dezvoltare matriciala cu no. adiacente (plus 2 si minus 2) pe numerele de baza (20 no.) :
{ Matrix development with no. adjacent (plus 2 and minus 2) on the base numbers (20 no.):}
{ Développement de matrice avec no. adjacent (plus 2 et moins 2) sur les numéros de base (20 no.) :}
M1 : {1-11-21-28} M2 : {2-12-20-30} M3 : {3-17-23-31}
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 | 2 (x) | | 1 | 2 (x) 3 | | | 2 (x) 3 |
--(x)---------------- --(x)---------------- ----------------------
| 4 | | | | 4 | | | | | 5 (x) 6 |
---------------------- ---------------------- ---------------------
| 7 (x) 8 | | | 7 (x) 8 | | | | 8 (x) 9 |
--------------------- --------------------- ----------------------
| | 11(x)12 | | | 11(x)12 | | 10 | | 12 |
============ ============ =(x)==(x)==(x)=
| 13(x)14 | | | | 14 | | | | 14 | |
--------------------- ---------(x)--------- ----------------------
| 16 | | | | | 17 | | | | 17 | |
--(x)---------------- --------------------- ---------(x)---------
| 19 | 20(x)21 | | | 20(x) 21 | | | 20 | |
---------------------- ---------------------- ---------------------
| | | | | | 23 (x) | | 22(x)23 | |
============ ============ ============
| 25(x) | | | 25(x) | | | 25(x)26 | |
--------------------- ---------------------- ----------------(x)--
| 28(x)29 | 30 | | 28 | | 30 | | | | 30 |
----------------(x)-- --(x)----------(x)-- ----------------------
| | | 33 | | 31 | | 33 | | 31(x)32 | |
---------------------- --------------------- ----------------------
| | 35(x)36 | | | 35(x)36 | | 34(x)35 | |
============ ============ =============
M4 : {4-7-33-36} M5 : {5-6-22-32} M6 : {8-14-25-35}
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 (x) 2 | | | | (x) 3 | | 1 | 2 (x) 3 |
---------------------- --------------------- --(x)----------------
| 4 | | | | | 5 (x) 6 | | | | |
--(x)---------------- --------------------- ---------------------
| 7 | | | | | (x) 9 | | | 8 (x) 9 |
--------------------- --------------------- ---------------------
| | 11(x)12 | | 10 | | | | 10 | 11 (x)12 |
============ =(x)========= =(x)=========
| 13 | | 15 | | 13 | | 15 | | | 14 | |
--(x)----------(x)-- ---------------(x)-- ---------(x)---------
| 16 | | 18 | | 16(x)17 | 18 | | | 17 | |
--------------------- --------------------- ----------------------
| 19(x)20 | 21 | | 19 | | | | | 20 (x) 21 |
----------------(x)-- --(x)---------------- ----------------------
| | | 24 | | 22 | 23(x)24 | | (x)23 | |
============ ============ ============
| | | 27 | | | 26 (x)27 | | 25(x)26 | |
----------------(x)-- ---------------------- ----------------------
| 28(x)29 | 30 | | | 29 | | | 28 | | 30 |
---------------------- ---------(x)--------- --(x)----------(x)--
| | | 33 | | 31 | 32 | | | 31 | | |
----------------(x)-- --(x)---------------- ---------------------
| | | 36 | | 34 | | | | 34(x)35 | |
============ ============ ============
M7 : {9-10-26-34} M8 : {13-16-19-29} M9 : {15-18-24-27}
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | (x) 3 | | 1 | | | | | | |
--------------------- --(x)---------------- ---------------------
| | 5 (x) 6 | | 4 | 5 (x) 6 | | 4 (x) 5 | 6 |
--------------------- ---------------------- -----------------(x)--
| | 8 (x) 9 | | 7 | | | | 7 | | 9 |
--------------------- --(x)---(x)--------- --(x)-----------------
| 10 | | | | | 11 | | | 10 | | |
=(x)========= ============ =============
| | 14 | 15 | | 13 | | 15 | | 13 | | 15 |
--------(x)----(x)-- --(x)----------(x)-- --(x)-----------(x)--
| | 17 | 18 | | 16 | | 18 | | 16 | | 18 |
--------------------- --------------------- ----------------------
| | | | | 19 | | 21 | | 19 | | |
---------------------- --(x)----------(x)-- --(x)----------------
| 22 | 23 | 24 | | 22 | | 24 | | 22 | | 24 |
=(x)==(x)==(x)= ============ =========(x)=
| 25 | 26 | 27 | | | | 27 | | | 26 | 27 |
--------------------- --(x)----------(x)-- ---------(x)---------
| | | | | 28 | 29 | | | | 29 | |
---------------------- ---------(x)-------- ----------------------
| 31(x)32 | | | | 32 | 33 | | | 32 (x) 33 |
---------------------- ---------------(x)-- --(x)-----------------
| 34(x)35 | | | | | 36 | | 34 | (x) 36 |
============ ============ ============
HOW TO PLAY ?
- se joaca matricea corespunzatoare ultimului no. extras (LAST) ;
- matricile necastigatoare se tripleaza (x3,x9…) si se adauga matricea corespunzatoare ultimului no. extras (LAST).
{-Play the matrix corresponding to the last no. extract (LAST);
-The non-dandruff matrices triples (x3, x9...) and add the corresponding matrix to the last no. extract (LAST).}
{- jouez la matrice correspondant au dernier no. extrait (LAST);
-Les matrices non-pellicules triplent (x3, x9...) et ajoutent la matrice correspondante au dernier no. extrait (LAST)}.
EX.(E.G.)
- LAST=19 E M8
- Play : 1xM8 + ZERO=1 ; LAST=33 E M4 - profit=5
- Play : 1xM4 + ZERO=1 ; LAST=9 E M7
- Play : 3xM4 + 1xM7 + ZERO=2 ; LAST=20 E M2 - profit=5
- Play : 3xM7 + 1xM2 + ZERO=2 ; LAST=3 E M3 - profit=31
- Play : 1xM3 + ZERO=1 ; LAST=14 E M6 - profit=36
Comentarii
Trimiteți un comentariu