ROULETTE 9_1
ROULETTE 9_1 (INSIDE)
*************
(DRAGU’s method)
Perechi de numere (step 18), configuratie ruleta :
{ Number pairs (step 18), roulette configuration:}
{ Paires de nombres (step 18), configuration roulette :}
- 1-21 ; 2. 2-20 ; 3. 3-23 ; 4. 4-33 ; 5. 5-32 ; 6. 6-22
- 7-36 ; 8. 8-35 ; 9. 9-34 ; 10. 10-26 ; 11. 11-28 ; 12. 12-3
- 13-29 ; 14. 14-25 ; 15. 15-24 ; 16. 16-19 ; 17. 17-31 ; 18. 18-27
Daca se considera si numerele adiacente (colaterale) ale celor 18 perechi de numere, se pot alege 3 modalitati de joc :
- – numere adiacente plus 1 si minus 1 : 18 matrici de cate 6 numere.
- – numere adiacente plus 2 si minus 2 : 18 matrici de cate 10 numere.
- – numere adiacente plus 3 si minus 3 : 18 matrici de cate 14 numere.
{ If you consider the adjacent numbers (collateral) of the 18 pairs of numbers, you can choose 3 game modes:
- – Adjacent numbers plus 1 and minus 1: - 18 matrices of 6 numbers.
- – Adjacent numbers plus 2 and minus 2: - 18 matrices of 10 numbers.
- – Adjacent numbers plus 3 and minus 3: - 18 matrices of 14 numbers.}
{ Si vous considérez les nombres adjacents (collatéral) des 18 paires de nombres, vous pouvez choisir 3 modes de jeu :
- - Nombres adjacents plus 1 et moins 1: - 18 matrices de 6 numéros.
- - Nombres adjacents plus 2 et moins 2: - 18 matrices de 10 numéros.
- - Nombres adjacents plus 3 et moins 3: - 18 matrices de 14 numéros.}
VAR. 1 (6 no.)
=====
M1 : 20 – (1) – 33 // 4 – (21) – 2 -> 1 – 2 – 4 – 20 – 21 – 33
M2 : 21 - (2) – 25 // 14 – (20) – 1 -> 1 – 2 – 14 - 20 – 21 - 25
M3 : 35 – (3) – 26 // 10 – (23) – 8 -> 3 - 8 – 10 – 23 – 26 – 35
M4 : 19 – (4) – 21 // 1 – (33) – 16 -> 1 - 4 – 16 – 19 – 21 – 33
M5 : 24 - (5) – 10 // 26 – (32) – 15 -> 5 – 10 – 15 – 24 – 26 – 32
M6 : 27 – (6) – 34 // 9 – (22) – 18 -> 6 – 9 – 18 – 22 – 27 – 34
M7 : 29 – (7) – 28 // 11 – (36) – 13 -> 7 – 11 – 13 – 28 – 29 – 36
M8 : 23 – (8) – 30 // 12 – (35) – 3 -> 3 – 8 – 12 – 23 – 30 – 35
M9 : 31 – (9) – 22 // 6 – (34) – 17 -> 6 – 9 – 17 – 22 – 31 – 34
M10 : 5 – (10) – 23 // 3 – (26) – 32 -> 3 – 5 – 10 – 23 – 26 – 32
M11 : 30 – (11) – 36 // 7 – (28) – 12 -> 7 – 11 – 12 – 28 – 30 – 36
M12 : 28 – (12) – 35 // 8 – (30) – 11 -> 8 – 11 – 12 – 28 – 30 – 35
M13 : 36 – (13)- 27 // 18 – (29) – 7 -> 7 – 13 – 18 – 27 – 29 – 36
M14 : 20 – (14) – 31 // 2 – (25) – 17 -> 2 – 14 – 17 – 20 – 25 – 31
M15 : 32 – (15) – 19 // 16 – (24) – 5 -> 5 – 15 – 16 – 19 – 24 – 32
M16 : 33 – (16) – 24 // 15 – (19) – 4 -> 4 – 15 – 16 – 19 – 24 – 33
M17 : 34 – (17) – 25 // 14 – (31) – 9 -> 9 – 14 – 17 – 25 – 31 – 34
M18 : 22 – (18) – 29 // 13 – (27) – 6 -> 6 – 13 – 18 – 22 – 27 – 29
Reprezentare grafica : {graphic representation:} {représentation graphique :}
M1 M2 M3
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 | 2 (x) | | 1 | 2 | | | | | 3 |
--(x)---------------- --(x)---(x)--------- ----------------(x)--
| 4 | | | | | | | | | | |
--------------------- --------------------- ------=-------------
| | | | | | | | | | 8 (x) |
--------------------- --------------------- --(x)----------------
| | | | | | | | | 10 | | |
============ ============ ============
| | | | | (x)14 | | | | | |
--------------------- --------------------- ----------------------
| | | | | | | | | | | |
---------(x)---(x)-- --------------------- ---------------------
| | 20 | 21 | | (x)20 | 21 | | | | |
--------------------- ----------------(x)-- ---------------------
| | | | | | | | | | 23(x) |
============ ============ ============
| | | | | 25 | | | | | 26 | |
--------------------- --(x)---------------- ---------(x)---------
| | | | | | | | | | | |
----------------(x)-- --------------------- ---------------------
| | | 33 | | | | | | | | |
--------------------- --------------------- ---------(x)---------
| | | | | | | | | | 35 | |
============ ============ ============
M4 M5 M6
ZERO ZERO ZERO
0 0 0
============ ============ ============
| 1 (x) | | | | | | | | | |
--------------------- ---------------------- ----------------(x)--
| 4 (x) | | | | 5 | | | | | 6 |
--------------------- ---------(x)--------- ----------------------
| | | | | | | | | | | 9 |
--------------------- ---------------------- ----------------(x)--
| | | | | 10(x) | | | | | |
============ ============ ============
| | | | | | (x) 15 | | | | |
--------------------- ---------------------- ---------------------
| 16(x) | | | | | | | | | 18 |
----------------(x)-- --------------------- ----------------(x)--
| 19(x) | 21 | | | | | | | | |
--------------------- --------------------- ----------------------
| | | | | | (x)24 | | 22(x) | |
============ ============ ============
| | | | | | 26 | | | | | 27 |
--------------------- ---------(x)--------- -----------------(x)--
| | | | | | | | | | | |
----------------(x)-- --------------------- ----------------------
| | | 33 | | | 32 | | | | | |
--------------------- ---------(x)--------- ---(x)----------------
| | | | | | | | | 34 | | |
============ ============ ============
M7 M8 M9
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | | | | | (x) 3 | | | | |
--------------------- ---------------------- ---------------------
| | | | | | | | | | (x) 6 |
--------------------- ---------(x)--------- ---------------------
| 7(x) | | | | 8 | | | | (x) 9 |
--------------------- ----------------(x)-- ----------------------
| | 11(x) | | | | 12 | | | | |
============ ============ ============
| 13(x) | | | | | | | | | |
--------------------- ---------------------- ---------------------
| | | | | | | | | | 17 | |
--------------------- ---------------------- ---------(x)---------
| | | | | | | | | | | |
--------------------- ----------(x)--------- --(x)---------------
| | | | | | 23 | | | 22 | | |
============ ============ ============
| | | | | | | | | | | |
--(x)---------------- ----------------(x)-- ---------------------
| 28 | 29 | | | | | 30 | | | | |
---------(x)-------- ---------------------- ---------------------
| | | | | | | | | 31(x) | |
----------------(x)-- --------------------- ---------------------
| | | 36 | | (x)35 | | | 34(x) | |
============ ============ ============
M10 M11 M12
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | | 3 | | | | | | | | |
--------(x)----(x)-- --------------------- ----------------------
| | 5 | | | | | | | | | |
---------------------- --(x)--------------- ---------------------
| | | | | 7 | | | | (x) 8 | |
--(x)---------------- ---------(x)---(x)-- ---------------------
| 10 | | | | | 11 | 12 | | | 11 | 12 |
============ ============ =====(x)==(x)=
| | | | | | | | | | | |
--------------------- --------------------- ---------------------
| | | | | | | | | | | |
--------------------- --------------------- ---------------------
| | | | | | | | | | | |
---------(x)--------- --------------------- ---------------------
| | 23 | | | | | | | | | |
============ ============ ============
| (x) 26 | | | | | | | | | |
--------------------- ---------------(x)-- --(x)----------------
| | | | | 28(x) | 30 | | 28 | | 30 |
--------------------- --------------------- ----------------(x)--
| (x) 32 | | | | | | | | | |
--------------------- ---------------(x)-- ---------------------
| | | | | | | 36 | | (x) 35 | |
============ ============ ============
M13 M14 M15
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | | | | (x) 2 | | | | | |
---------------------- --------------------- ---------------------
| | | | | | | | | | 5 | |
---------------------- --------------------- ---------(x)---------
| 7 (x) | | | | | | | | | |
---------------------- --------------------- ----------------------
| | | | | | | | | | | |
=(x)========= =====(x)===== =========(x)=
| 13 | | | | | 14 | | | | | 15 |
---------------------- --------------------- --(x)----------------
| | | 18 | | (x) 17 | | | 16 | | |
----------------(x)-- --------------------- ---------------------
| | | | | (x) 20 | | | 19 | | |
--------------------- --------------------- --(x)----------------
| | | | | | | | | | | 24 |
=========(x)= =(x)========= =========(x)=
| | | 27 | | 25 | | | | | | |
--------(x)---------- --------------------- ----------------------
| | 29 | | | | | | | | | |
---------------------- --(x)--------------- ---------------------
| | | | | 31 | | | | | 32(x) |
---------------------- --------------------- ---------------------
| | (x)36 | | | | | | | | |
============ ============ ============
M16 M17 M18
ZERO ZERO ZERO
0 0 0
============ ============ ============
| | | | | | | | | | | |
--------------------- ---------------------- ----------------(x)--
| 4 (x) | | | | | | | | | 6 |
--------------------- ---------------------- ---------------------
| | | | | | (x) 9 | | | | |
--------------------- ---------------------- ---------------------
| | | | | | | | | | | |
============ =====(x)===== =(x)=========
| | (x)15 | | | 14 | | | 13 | | |
--------------------- ---------------------- ----------------------
| 16(x) | | | | 17(x) | | | | 18 |
--------------------- ---------------------- ----------------(x)--
| 19(x) | | | | | | | | | |
--------------------- ---------------------- ----------------------
| | | 24 | | | | | | 22 | | |
=========(x)= ============ =(x)=========
| | | | | 25(x) | | | | | 27 |
--------------------- ---------------------- ----------------(x)--
| | | | | | | | | | 29 | |
----------------(x)-- --------------------- ---------(x)---------
| | | 33 | | 31(x) | | | | | |
--------------------- --------------------- ----------------------
| | | | | 34(x) | | | | | |
============ ============ ============
BET TABLE (6 no.)
-----------------
x = no. in matrices
BET COST PROFIT
- x = 1 6 36- 6=30
- x = 1 6 36-12=24
(12)
- x = 1 6 36-18=18
(18)
- x = 1 6 36-24=12
(24)
- x = 1 6 36-30=6
(30)
- x = 2 12 72-42=30
(42)
- x = 2 12 72-54=18
(54)
- x = 2 12 72-66=6
(66)
- x = 3 18 108-84=24
(84)
- x= 3 18 108-102=6
(102)
- x = 4 24 144-126=18
(126)
- x = 5 30 180-156=24
(156)
- x = 6 36 216-192=24
(192)
- x= 7 42 252-234=18
(234)
- x = 8 48 288-282=6
(282)
- x = 10 60 360-342=18
(342)
- x = 12 72 432-414=18
(414)
- x = 14 84 504-498=6
(498)
- x = 17 102 612-600=12
(600)
- x = 21 126 756-726=30
(726)
- x= 25 150 900-876=24
(876)
- x= 30 180 1080-1056=24
(1056)
- x= 36 216 1296-1272=24
(1272)
- x= 43 258 1548-1530=18
(1530)
- x= 52 312 1872-1842=30
(1842)
- x= 62 372 2232-2214=18
(2214)
- x= 74 444 2664-2658=6
(2658)
- x= 89 534 3204-3192=12
(3192)
-------------------------------------- CASINO LIMIT - X = 100
1) – MODE 1 – (intreg) (whole)
HOW TO PLAY ?
- jucati numai jetoane mici (ex. 10 bani, 1 cent, etc). JUCATI RESPONSABIL ! Metodele prezentate sunt ‘’extra-income’’, nu sunt metode de IMBOGATIRE !
- fiecare matrice joaca independent, conform BET TABLE;
- pe ultimul numar extras, vor apare castigatoare 3 matrici ;
- matricile “castigatoare” (dar active !), se initializeaza pe pos.1 (x=1), celelalte urmeaza pozitia din TABLE.
- daca SUMA PROFIT >0, toate matricile active se aduc pe pos.1 (x1) si se incepe o noua sesiune (NEW) ;
- la un profit care vi se pare rezonabil, folositi metoda SCALPING (taie motzul si fugi !)
- ATENTIE la ZERO !
{-Play only small tokens (e.g. 10 Bani, 1 cent, etc.). PLAY RESPONSIBLY! The methods presented are ' ' extra-income ' ', there are no methods to enrich!
-Each matrix plays independentley, according to BET TABLE;
-On the last number extracted, 3 matrices will appear;
-the "winning" matrices (but active!), initializes on POS. 1 (x = 1), the other follows the position in TABLE.
-If the PROFIT amount > 0, all active matrices are brought to Pos. 1 (x1) and start a new session (NEW);
-At a profit that you find reasonable, use the SCALPING method (cut … and run!)
-ATTENTION to ZERO!}
{-Jouer uniquement les petits jetons (p. ex. 10 Bani, 1 cent, etc.). PLAY RESPONSIBLY! Les méthodes présentées sont ' extra-revenu ', il n'y a pas de méthodes à enrichir!
-Chaque matrice joue indépendamment, selon BET TABLE;
-Sur le dernier numéro extrait, 3 matrices apparaîtront ;
-les matrices "gagnantes" (mais actives!), paraphé sur POS. 1 (x=1), l'autre suit la position en TABLE
-Si le montant de profit 0, toutes les matrices actives sont apportées à Pos. 1 (x1) et commencent une nouvelle session (NEW);
-À un profit que vous trouvez raisonnable, utilisez la méthode SCALPING (couper … et courir!)
-ATTENTION à ZERO!}
RECOMANDARE : la profit de 30-40 x (bet=1), parasiti jocul, asteptati si reveniti cu o noua sesiune de lucru.
NOTA : (-), (x1) – numar extras(LAST) ; E = engulf (apartine, cuprins in…)
- se joaca matricile corespunzatoare ultimului numar (LAST), conform TABLE si se adauga – matricile corespunzatoare noului numar extras (new LAST).
{RECOMMENDATION: At profit of 30-40 x (bet = 1), leave the game, wait and return with a new work session.
NOTE: (-), (x1) – Number extracted (LAST); E = Engulf (belongs, contained in...)
-Play the matrices corresponding to the last number (LAST), according to TABLE and add – the corresponding matrices of the new number extracted (new LAST).}
{RECOMMANDATION: Au profit de 30-40 x (bet=1), quitter le jeu, attendre et revenir avec une nouvelle session de travail.
REMARQUE: (-), (x1) - Nombre extrait (LAST); E - Engulf (appartient, contenu dans...)
-Jouer les matrices correspondant au dernier numéro (LAST), selon le TABLE et ajouter - les matrices correspondantes du nouveau nombre extrait (nouveau LAST).}
EX.(E.G.)
|->NEW |->NEW |->NEW
SPIN 1. 2. 3. | 4. | 5.
M1 : - - - | - | -
M2 : - - - | - | -
M3 : - (-) (x1) | x1 | x1
M4 : - - - | - | -
M5 : - (-) (x1) | x1 | x1
M6 : (-) x1 x1 | x1 | x1
M7 : - - - | (-) | ( x1)
M8 : - - - | - | -
M9 : - - - | - | -
M10 : - (-) (x1) | x1 | x1
M11 : - - - | - | -
M12 : - - - | - | -
M13 : (-) x1 x1 | (x1) | (x1)
M14 : - - - | - | -
M15 : - - - | - | -
M16 : - - - | - | -
M17 : - - - | - | -
M18 : (-) x1 x1 | (x1) | (x1)
- LAST=18 E M6, M13, M18
- Play : 1xM6 + 1xM13 + 1xM18 + ZERO=1 ; LAST=10 E M3, M5, M10
- Play : 1xM3 + 1xM5 + 1xM6 + 1xM10 + 1xM13 + 1xM18 + ZERO=1
LAST=10 E M3, M5, M10 - profit=52 (can leave session !) - NEW
- Play : repeat spin 3; LAST=29 E M7, M13, M18 - profit=87 (can leave session !)
- Play : 1xM3 + 1xM5 + 1xM6 + 1xM7 + 1xM10 + 1xM13 + 1xM18 + ZERO=2
LAST=29 E M7, M13, M18 - profit=151
2) – MODE 2 - half
- se joaca pozitiile notate cu ‘’x’’-INSIDE. Se tine seama de numerele de baza ale matricilor si nu de numerele adiacente. Matricile care pierd, se dubleaza.
{-Play the positions denoted with ' ' X ' '-INSIDE. It's taking into account the basic numbers of the matrices and not the adjacent numbers. The matricile that loses, doubles.}
{-Jouer les positions dénotées avec ' ' X ' '-INSIDE. C'est en tenant compte des nombres de base des matrices et non des nombres adjacents. Le matricile qui perd, double.}
Comentarii
Trimiteți un comentariu